Properties

Label 2-768-1.1-c5-0-21
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $123.174$
Root an. cond. $11.0984$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 20.4·5-s − 35.4·7-s + 81·9-s + 486.·11-s − 200.·13-s − 184.·15-s − 692.·17-s − 2.64e3·19-s − 318.·21-s + 3.62e3·23-s − 2.70e3·25-s + 729·27-s + 8.49e3·29-s + 6.26e3·31-s + 4.38e3·33-s + 725.·35-s − 9.59e3·37-s − 1.80e3·39-s + 3.77e3·41-s + 5.06e3·43-s − 1.65e3·45-s − 1.22e4·47-s − 1.55e4·49-s − 6.23e3·51-s + 1.68e4·53-s − 9.97e3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.366·5-s − 0.273·7-s + 0.333·9-s + 1.21·11-s − 0.329·13-s − 0.211·15-s − 0.581·17-s − 1.67·19-s − 0.157·21-s + 1.43·23-s − 0.865·25-s + 0.192·27-s + 1.87·29-s + 1.17·31-s + 0.700·33-s + 0.100·35-s − 1.15·37-s − 0.190·39-s + 0.350·41-s + 0.417·43-s − 0.122·45-s − 0.807·47-s − 0.925·49-s − 0.335·51-s + 0.824·53-s − 0.444·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(123.174\)
Root analytic conductor: \(11.0984\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.465769012\)
\(L(\frac12)\) \(\approx\) \(2.465769012\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
good5 \( 1 + 20.4T + 3.12e3T^{2} \)
7 \( 1 + 35.4T + 1.68e4T^{2} \)
11 \( 1 - 486.T + 1.61e5T^{2} \)
13 \( 1 + 200.T + 3.71e5T^{2} \)
17 \( 1 + 692.T + 1.41e6T^{2} \)
19 \( 1 + 2.64e3T + 2.47e6T^{2} \)
23 \( 1 - 3.62e3T + 6.43e6T^{2} \)
29 \( 1 - 8.49e3T + 2.05e7T^{2} \)
31 \( 1 - 6.26e3T + 2.86e7T^{2} \)
37 \( 1 + 9.59e3T + 6.93e7T^{2} \)
41 \( 1 - 3.77e3T + 1.15e8T^{2} \)
43 \( 1 - 5.06e3T + 1.47e8T^{2} \)
47 \( 1 + 1.22e4T + 2.29e8T^{2} \)
53 \( 1 - 1.68e4T + 4.18e8T^{2} \)
59 \( 1 + 1.31e4T + 7.14e8T^{2} \)
61 \( 1 + 2.45e4T + 8.44e8T^{2} \)
67 \( 1 - 1.87e4T + 1.35e9T^{2} \)
71 \( 1 - 3.56e4T + 1.80e9T^{2} \)
73 \( 1 - 5.86e4T + 2.07e9T^{2} \)
79 \( 1 - 9.81e4T + 3.07e9T^{2} \)
83 \( 1 - 3.77e4T + 3.93e9T^{2} \)
89 \( 1 + 6.09e4T + 5.58e9T^{2} \)
97 \( 1 + 6.87e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.419149988628101172546419680385, −8.706142587504366943875513751302, −8.037756975720185285192970846938, −6.75810954855759077052800820526, −6.45806456915900032698380615685, −4.81148328089318065063336978516, −4.08530992464791282404537975190, −3.06646941084177212729259863322, −1.98039010393660317139663110381, −0.70180910789587226150465748416, 0.70180910789587226150465748416, 1.98039010393660317139663110381, 3.06646941084177212729259863322, 4.08530992464791282404537975190, 4.81148328089318065063336978516, 6.45806456915900032698380615685, 6.75810954855759077052800820526, 8.037756975720185285192970846938, 8.706142587504366943875513751302, 9.419149988628101172546419680385

Graph of the $Z$-function along the critical line