Properties

Label 768.6.a.bd.1.3
Level $768$
Weight $6$
Character 768.1
Self dual yes
Analytic conductor $123.175$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,45,0,50,0,98,0,405,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 65x^{3} + 85x^{2} + 856x - 1692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.28141\) of defining polynomial
Character \(\chi\) \(=\) 768.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -20.4846 q^{5} -35.4345 q^{7} +81.0000 q^{9} +486.951 q^{11} -200.684 q^{13} -184.361 q^{15} -692.475 q^{17} -2640.10 q^{19} -318.910 q^{21} +3629.10 q^{23} -2705.38 q^{25} +729.000 q^{27} +8495.84 q^{29} +6268.83 q^{31} +4382.56 q^{33} +725.859 q^{35} -9599.13 q^{37} -1806.15 q^{39} +3773.49 q^{41} +5060.77 q^{43} -1659.25 q^{45} -12234.9 q^{47} -15551.4 q^{49} -6232.27 q^{51} +16864.5 q^{53} -9974.98 q^{55} -23760.9 q^{57} -13173.3 q^{59} -24525.7 q^{61} -2870.19 q^{63} +4110.92 q^{65} +18703.9 q^{67} +32661.9 q^{69} +35604.9 q^{71} +58600.2 q^{73} -24348.4 q^{75} -17254.9 q^{77} +98134.9 q^{79} +6561.00 q^{81} +37722.5 q^{83} +14185.0 q^{85} +76462.5 q^{87} -60955.8 q^{89} +7111.12 q^{91} +56419.4 q^{93} +54081.3 q^{95} -68778.9 q^{97} +39443.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 45 q^{3} + 50 q^{5} + 98 q^{7} + 405 q^{9} + 676 q^{13} + 450 q^{15} - 202 q^{17} + 716 q^{19} + 882 q^{21} - 836 q^{23} + 4683 q^{25} + 3645 q^{27} + 5046 q^{29} + 9346 q^{31} + 436 q^{35} + 10952 q^{37}+ \cdots + 29686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −20.4846 −0.366439 −0.183219 0.983072i \(-0.558652\pi\)
−0.183219 + 0.983072i \(0.558652\pi\)
\(6\) 0 0
\(7\) −35.4345 −0.273326 −0.136663 0.990618i \(-0.543638\pi\)
−0.136663 + 0.990618i \(0.543638\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 486.951 1.21340 0.606700 0.794931i \(-0.292493\pi\)
0.606700 + 0.794931i \(0.292493\pi\)
\(12\) 0 0
\(13\) −200.684 −0.329347 −0.164674 0.986348i \(-0.552657\pi\)
−0.164674 + 0.986348i \(0.552657\pi\)
\(14\) 0 0
\(15\) −184.361 −0.211564
\(16\) 0 0
\(17\) −692.475 −0.581141 −0.290571 0.956854i \(-0.593845\pi\)
−0.290571 + 0.956854i \(0.593845\pi\)
\(18\) 0 0
\(19\) −2640.10 −1.67779 −0.838894 0.544296i \(-0.816797\pi\)
−0.838894 + 0.544296i \(0.816797\pi\)
\(20\) 0 0
\(21\) −318.910 −0.157805
\(22\) 0 0
\(23\) 3629.10 1.43047 0.715237 0.698882i \(-0.246319\pi\)
0.715237 + 0.698882i \(0.246319\pi\)
\(24\) 0 0
\(25\) −2705.38 −0.865723
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 8495.84 1.87591 0.937953 0.346762i \(-0.112719\pi\)
0.937953 + 0.346762i \(0.112719\pi\)
\(30\) 0 0
\(31\) 6268.83 1.17161 0.585804 0.810453i \(-0.300779\pi\)
0.585804 + 0.810453i \(0.300779\pi\)
\(32\) 0 0
\(33\) 4382.56 0.700557
\(34\) 0 0
\(35\) 725.859 0.100157
\(36\) 0 0
\(37\) −9599.13 −1.15273 −0.576365 0.817193i \(-0.695529\pi\)
−0.576365 + 0.817193i \(0.695529\pi\)
\(38\) 0 0
\(39\) −1806.15 −0.190149
\(40\) 0 0
\(41\) 3773.49 0.350577 0.175289 0.984517i \(-0.443914\pi\)
0.175289 + 0.984517i \(0.443914\pi\)
\(42\) 0 0
\(43\) 5060.77 0.417393 0.208697 0.977980i \(-0.433078\pi\)
0.208697 + 0.977980i \(0.433078\pi\)
\(44\) 0 0
\(45\) −1659.25 −0.122146
\(46\) 0 0
\(47\) −12234.9 −0.807898 −0.403949 0.914782i \(-0.632363\pi\)
−0.403949 + 0.914782i \(0.632363\pi\)
\(48\) 0 0
\(49\) −15551.4 −0.925293
\(50\) 0 0
\(51\) −6232.27 −0.335522
\(52\) 0 0
\(53\) 16864.5 0.824678 0.412339 0.911031i \(-0.364712\pi\)
0.412339 + 0.911031i \(0.364712\pi\)
\(54\) 0 0
\(55\) −9974.98 −0.444637
\(56\) 0 0
\(57\) −23760.9 −0.968671
\(58\) 0 0
\(59\) −13173.3 −0.492680 −0.246340 0.969183i \(-0.579228\pi\)
−0.246340 + 0.969183i \(0.579228\pi\)
\(60\) 0 0
\(61\) −24525.7 −0.843912 −0.421956 0.906616i \(-0.638656\pi\)
−0.421956 + 0.906616i \(0.638656\pi\)
\(62\) 0 0
\(63\) −2870.19 −0.0911086
\(64\) 0 0
\(65\) 4110.92 0.120686
\(66\) 0 0
\(67\) 18703.9 0.509032 0.254516 0.967069i \(-0.418084\pi\)
0.254516 + 0.967069i \(0.418084\pi\)
\(68\) 0 0
\(69\) 32661.9 0.825884
\(70\) 0 0
\(71\) 35604.9 0.838231 0.419116 0.907933i \(-0.362340\pi\)
0.419116 + 0.907933i \(0.362340\pi\)
\(72\) 0 0
\(73\) 58600.2 1.28704 0.643520 0.765429i \(-0.277473\pi\)
0.643520 + 0.765429i \(0.277473\pi\)
\(74\) 0 0
\(75\) −24348.4 −0.499825
\(76\) 0 0
\(77\) −17254.9 −0.331654
\(78\) 0 0
\(79\) 98134.9 1.76911 0.884557 0.466432i \(-0.154461\pi\)
0.884557 + 0.466432i \(0.154461\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 37722.5 0.601043 0.300522 0.953775i \(-0.402839\pi\)
0.300522 + 0.953775i \(0.402839\pi\)
\(84\) 0 0
\(85\) 14185.0 0.212953
\(86\) 0 0
\(87\) 76462.5 1.08306
\(88\) 0 0
\(89\) −60955.8 −0.815718 −0.407859 0.913045i \(-0.633725\pi\)
−0.407859 + 0.913045i \(0.633725\pi\)
\(90\) 0 0
\(91\) 7111.12 0.0900191
\(92\) 0 0
\(93\) 56419.4 0.676428
\(94\) 0 0
\(95\) 54081.3 0.614806
\(96\) 0 0
\(97\) −68778.9 −0.742209 −0.371104 0.928591i \(-0.621021\pi\)
−0.371104 + 0.928591i \(0.621021\pi\)
\(98\) 0 0
\(99\) 39443.1 0.404467
\(100\) 0 0
\(101\) 27369.0 0.266966 0.133483 0.991051i \(-0.457384\pi\)
0.133483 + 0.991051i \(0.457384\pi\)
\(102\) 0 0
\(103\) −58941.9 −0.547433 −0.273717 0.961810i \(-0.588253\pi\)
−0.273717 + 0.961810i \(0.588253\pi\)
\(104\) 0 0
\(105\) 6532.73 0.0578258
\(106\) 0 0
\(107\) 32173.9 0.271672 0.135836 0.990731i \(-0.456628\pi\)
0.135836 + 0.990731i \(0.456628\pi\)
\(108\) 0 0
\(109\) 185150. 1.49265 0.746324 0.665583i \(-0.231817\pi\)
0.746324 + 0.665583i \(0.231817\pi\)
\(110\) 0 0
\(111\) −86392.1 −0.665529
\(112\) 0 0
\(113\) 194419. 1.43233 0.716165 0.697931i \(-0.245896\pi\)
0.716165 + 0.697931i \(0.245896\pi\)
\(114\) 0 0
\(115\) −74340.6 −0.524181
\(116\) 0 0
\(117\) −16255.4 −0.109782
\(118\) 0 0
\(119\) 24537.5 0.158841
\(120\) 0 0
\(121\) 76070.7 0.472339
\(122\) 0 0
\(123\) 33961.4 0.202406
\(124\) 0 0
\(125\) 119433. 0.683673
\(126\) 0 0
\(127\) −106993. −0.588633 −0.294317 0.955708i \(-0.595092\pi\)
−0.294317 + 0.955708i \(0.595092\pi\)
\(128\) 0 0
\(129\) 45546.9 0.240982
\(130\) 0 0
\(131\) −288876. −1.47073 −0.735366 0.677670i \(-0.762990\pi\)
−0.735366 + 0.677670i \(0.762990\pi\)
\(132\) 0 0
\(133\) 93550.6 0.458583
\(134\) 0 0
\(135\) −14933.2 −0.0705212
\(136\) 0 0
\(137\) 70427.1 0.320582 0.160291 0.987070i \(-0.448757\pi\)
0.160291 + 0.987070i \(0.448757\pi\)
\(138\) 0 0
\(139\) 210073. 0.922217 0.461108 0.887344i \(-0.347452\pi\)
0.461108 + 0.887344i \(0.347452\pi\)
\(140\) 0 0
\(141\) −110114. −0.466440
\(142\) 0 0
\(143\) −97723.3 −0.399630
\(144\) 0 0
\(145\) −174033. −0.687405
\(146\) 0 0
\(147\) −139963. −0.534218
\(148\) 0 0
\(149\) 233930. 0.863217 0.431608 0.902061i \(-0.357946\pi\)
0.431608 + 0.902061i \(0.357946\pi\)
\(150\) 0 0
\(151\) 47860.3 0.170818 0.0854089 0.996346i \(-0.472780\pi\)
0.0854089 + 0.996346i \(0.472780\pi\)
\(152\) 0 0
\(153\) −56090.5 −0.193714
\(154\) 0 0
\(155\) −128414. −0.429323
\(156\) 0 0
\(157\) 325886. 1.05516 0.527578 0.849506i \(-0.323100\pi\)
0.527578 + 0.849506i \(0.323100\pi\)
\(158\) 0 0
\(159\) 151781. 0.476128
\(160\) 0 0
\(161\) −128595. −0.390985
\(162\) 0 0
\(163\) 423064. 1.24720 0.623602 0.781742i \(-0.285669\pi\)
0.623602 + 0.781742i \(0.285669\pi\)
\(164\) 0 0
\(165\) −89774.9 −0.256711
\(166\) 0 0
\(167\) −300663. −0.834236 −0.417118 0.908852i \(-0.636960\pi\)
−0.417118 + 0.908852i \(0.636960\pi\)
\(168\) 0 0
\(169\) −331019. −0.891530
\(170\) 0 0
\(171\) −213848. −0.559262
\(172\) 0 0
\(173\) 486907. 1.23689 0.618445 0.785828i \(-0.287763\pi\)
0.618445 + 0.785828i \(0.287763\pi\)
\(174\) 0 0
\(175\) 95863.8 0.236624
\(176\) 0 0
\(177\) −118560. −0.284449
\(178\) 0 0
\(179\) 499594. 1.16543 0.582713 0.812678i \(-0.301991\pi\)
0.582713 + 0.812678i \(0.301991\pi\)
\(180\) 0 0
\(181\) 840307. 1.90652 0.953261 0.302149i \(-0.0977040\pi\)
0.953261 + 0.302149i \(0.0977040\pi\)
\(182\) 0 0
\(183\) −220731. −0.487233
\(184\) 0 0
\(185\) 196634. 0.422405
\(186\) 0 0
\(187\) −337202. −0.705157
\(188\) 0 0
\(189\) −25831.7 −0.0526016
\(190\) 0 0
\(191\) −479331. −0.950718 −0.475359 0.879792i \(-0.657682\pi\)
−0.475359 + 0.879792i \(0.657682\pi\)
\(192\) 0 0
\(193\) 1.00793e6 1.94776 0.973880 0.227063i \(-0.0729123\pi\)
0.973880 + 0.227063i \(0.0729123\pi\)
\(194\) 0 0
\(195\) 36998.3 0.0696779
\(196\) 0 0
\(197\) 458514. 0.841757 0.420879 0.907117i \(-0.361722\pi\)
0.420879 + 0.907117i \(0.361722\pi\)
\(198\) 0 0
\(199\) 212134. 0.379731 0.189866 0.981810i \(-0.439195\pi\)
0.189866 + 0.981810i \(0.439195\pi\)
\(200\) 0 0
\(201\) 168335. 0.293890
\(202\) 0 0
\(203\) −301045. −0.512734
\(204\) 0 0
\(205\) −77298.3 −0.128465
\(206\) 0 0
\(207\) 293957. 0.476825
\(208\) 0 0
\(209\) −1.28560e6 −2.03583
\(210\) 0 0
\(211\) −441484. −0.682667 −0.341333 0.939942i \(-0.610879\pi\)
−0.341333 + 0.939942i \(0.610879\pi\)
\(212\) 0 0
\(213\) 320444. 0.483953
\(214\) 0 0
\(215\) −103668. −0.152949
\(216\) 0 0
\(217\) −222132. −0.320231
\(218\) 0 0
\(219\) 527402. 0.743073
\(220\) 0 0
\(221\) 138968. 0.191397
\(222\) 0 0
\(223\) −477411. −0.642881 −0.321440 0.946930i \(-0.604167\pi\)
−0.321440 + 0.946930i \(0.604167\pi\)
\(224\) 0 0
\(225\) −219136. −0.288574
\(226\) 0 0
\(227\) −72520.0 −0.0934100 −0.0467050 0.998909i \(-0.514872\pi\)
−0.0467050 + 0.998909i \(0.514872\pi\)
\(228\) 0 0
\(229\) 819922. 1.03320 0.516599 0.856227i \(-0.327198\pi\)
0.516599 + 0.856227i \(0.327198\pi\)
\(230\) 0 0
\(231\) −155294. −0.191480
\(232\) 0 0
\(233\) 1893.51 0.00228495 0.00114248 0.999999i \(-0.499636\pi\)
0.00114248 + 0.999999i \(0.499636\pi\)
\(234\) 0 0
\(235\) 250627. 0.296045
\(236\) 0 0
\(237\) 883214. 1.02140
\(238\) 0 0
\(239\) 507498. 0.574698 0.287349 0.957826i \(-0.407226\pi\)
0.287349 + 0.957826i \(0.407226\pi\)
\(240\) 0 0
\(241\) −94613.8 −0.104933 −0.0524665 0.998623i \(-0.516708\pi\)
−0.0524665 + 0.998623i \(0.516708\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 318564. 0.339063
\(246\) 0 0
\(247\) 529826. 0.552575
\(248\) 0 0
\(249\) 339503. 0.347012
\(250\) 0 0
\(251\) 1.34294e6 1.34547 0.672734 0.739884i \(-0.265120\pi\)
0.672734 + 0.739884i \(0.265120\pi\)
\(252\) 0 0
\(253\) 1.76720e6 1.73574
\(254\) 0 0
\(255\) 127665. 0.122948
\(256\) 0 0
\(257\) 1.58681e6 1.49862 0.749311 0.662219i \(-0.230385\pi\)
0.749311 + 0.662219i \(0.230385\pi\)
\(258\) 0 0
\(259\) 340140. 0.315071
\(260\) 0 0
\(261\) 688163. 0.625302
\(262\) 0 0
\(263\) −1.10061e6 −0.981169 −0.490585 0.871394i \(-0.663217\pi\)
−0.490585 + 0.871394i \(0.663217\pi\)
\(264\) 0 0
\(265\) −345462. −0.302194
\(266\) 0 0
\(267\) −548603. −0.470955
\(268\) 0 0
\(269\) 1.70145e6 1.43363 0.716817 0.697261i \(-0.245598\pi\)
0.716817 + 0.697261i \(0.245598\pi\)
\(270\) 0 0
\(271\) −1.67829e6 −1.38817 −0.694085 0.719893i \(-0.744191\pi\)
−0.694085 + 0.719893i \(0.744191\pi\)
\(272\) 0 0
\(273\) 64000.1 0.0519726
\(274\) 0 0
\(275\) −1.31739e6 −1.05047
\(276\) 0 0
\(277\) −961399. −0.752842 −0.376421 0.926449i \(-0.622845\pi\)
−0.376421 + 0.926449i \(0.622845\pi\)
\(278\) 0 0
\(279\) 507775. 0.390536
\(280\) 0 0
\(281\) −576110. −0.435251 −0.217625 0.976032i \(-0.569831\pi\)
−0.217625 + 0.976032i \(0.569831\pi\)
\(282\) 0 0
\(283\) −580242. −0.430668 −0.215334 0.976540i \(-0.569084\pi\)
−0.215334 + 0.976540i \(0.569084\pi\)
\(284\) 0 0
\(285\) 486732. 0.354959
\(286\) 0 0
\(287\) −133712. −0.0958218
\(288\) 0 0
\(289\) −940336. −0.662275
\(290\) 0 0
\(291\) −619010. −0.428514
\(292\) 0 0
\(293\) 1.17710e6 0.801021 0.400510 0.916292i \(-0.368833\pi\)
0.400510 + 0.916292i \(0.368833\pi\)
\(294\) 0 0
\(295\) 269850. 0.180537
\(296\) 0 0
\(297\) 354988. 0.233519
\(298\) 0 0
\(299\) −728303. −0.471123
\(300\) 0 0
\(301\) −179326. −0.114084
\(302\) 0 0
\(303\) 246321. 0.154133
\(304\) 0 0
\(305\) 502399. 0.309242
\(306\) 0 0
\(307\) −316229. −0.191494 −0.0957470 0.995406i \(-0.530524\pi\)
−0.0957470 + 0.995406i \(0.530524\pi\)
\(308\) 0 0
\(309\) −530477. −0.316061
\(310\) 0 0
\(311\) −435658. −0.255414 −0.127707 0.991812i \(-0.540762\pi\)
−0.127707 + 0.991812i \(0.540762\pi\)
\(312\) 0 0
\(313\) 329209. 0.189938 0.0949688 0.995480i \(-0.469725\pi\)
0.0949688 + 0.995480i \(0.469725\pi\)
\(314\) 0 0
\(315\) 58794.6 0.0333857
\(316\) 0 0
\(317\) 874355. 0.488697 0.244348 0.969687i \(-0.421426\pi\)
0.244348 + 0.969687i \(0.421426\pi\)
\(318\) 0 0
\(319\) 4.13706e6 2.27622
\(320\) 0 0
\(321\) 289565. 0.156850
\(322\) 0 0
\(323\) 1.82820e6 0.975031
\(324\) 0 0
\(325\) 542927. 0.285123
\(326\) 0 0
\(327\) 1.66635e6 0.861781
\(328\) 0 0
\(329\) 433538. 0.220819
\(330\) 0 0
\(331\) 899001. 0.451014 0.225507 0.974242i \(-0.427596\pi\)
0.225507 + 0.974242i \(0.427596\pi\)
\(332\) 0 0
\(333\) −777529. −0.384243
\(334\) 0 0
\(335\) −383141. −0.186529
\(336\) 0 0
\(337\) 161680. 0.0775500 0.0387750 0.999248i \(-0.487654\pi\)
0.0387750 + 0.999248i \(0.487654\pi\)
\(338\) 0 0
\(339\) 1.74977e6 0.826956
\(340\) 0 0
\(341\) 3.05261e6 1.42163
\(342\) 0 0
\(343\) 1.14660e6 0.526232
\(344\) 0 0
\(345\) −669065. −0.302636
\(346\) 0 0
\(347\) −473459. −0.211086 −0.105543 0.994415i \(-0.533658\pi\)
−0.105543 + 0.994415i \(0.533658\pi\)
\(348\) 0 0
\(349\) −1.98873e6 −0.874000 −0.437000 0.899461i \(-0.643959\pi\)
−0.437000 + 0.899461i \(0.643959\pi\)
\(350\) 0 0
\(351\) −146299. −0.0633829
\(352\) 0 0
\(353\) −1.17160e6 −0.500428 −0.250214 0.968191i \(-0.580501\pi\)
−0.250214 + 0.968191i \(0.580501\pi\)
\(354\) 0 0
\(355\) −729351. −0.307161
\(356\) 0 0
\(357\) 220837. 0.0917068
\(358\) 0 0
\(359\) 2.22214e6 0.909988 0.454994 0.890495i \(-0.349641\pi\)
0.454994 + 0.890495i \(0.349641\pi\)
\(360\) 0 0
\(361\) 4.49404e6 1.81497
\(362\) 0 0
\(363\) 684636. 0.272705
\(364\) 0 0
\(365\) −1.20040e6 −0.471622
\(366\) 0 0
\(367\) 3.84620e6 1.49062 0.745310 0.666718i \(-0.232301\pi\)
0.745310 + 0.666718i \(0.232301\pi\)
\(368\) 0 0
\(369\) 305653. 0.116859
\(370\) 0 0
\(371\) −597585. −0.225406
\(372\) 0 0
\(373\) 3.45371e6 1.28533 0.642664 0.766148i \(-0.277829\pi\)
0.642664 + 0.766148i \(0.277829\pi\)
\(374\) 0 0
\(375\) 1.07490e6 0.394719
\(376\) 0 0
\(377\) −1.70498e6 −0.617825
\(378\) 0 0
\(379\) −2.58847e6 −0.925646 −0.462823 0.886451i \(-0.653164\pi\)
−0.462823 + 0.886451i \(0.653164\pi\)
\(380\) 0 0
\(381\) −962934. −0.339848
\(382\) 0 0
\(383\) −4.78283e6 −1.66605 −0.833026 0.553234i \(-0.813393\pi\)
−0.833026 + 0.553234i \(0.813393\pi\)
\(384\) 0 0
\(385\) 353458. 0.121531
\(386\) 0 0
\(387\) 409922. 0.139131
\(388\) 0 0
\(389\) −1.09816e6 −0.367953 −0.183976 0.982931i \(-0.558897\pi\)
−0.183976 + 0.982931i \(0.558897\pi\)
\(390\) 0 0
\(391\) −2.51306e6 −0.831307
\(392\) 0 0
\(393\) −2.59989e6 −0.849128
\(394\) 0 0
\(395\) −2.01025e6 −0.648272
\(396\) 0 0
\(397\) 4.85409e6 1.54572 0.772861 0.634575i \(-0.218825\pi\)
0.772861 + 0.634575i \(0.218825\pi\)
\(398\) 0 0
\(399\) 841956. 0.264763
\(400\) 0 0
\(401\) −752843. −0.233799 −0.116900 0.993144i \(-0.537296\pi\)
−0.116900 + 0.993144i \(0.537296\pi\)
\(402\) 0 0
\(403\) −1.25805e6 −0.385866
\(404\) 0 0
\(405\) −134399. −0.0407154
\(406\) 0 0
\(407\) −4.67431e6 −1.39872
\(408\) 0 0
\(409\) −3.01319e6 −0.890672 −0.445336 0.895364i \(-0.646916\pi\)
−0.445336 + 0.895364i \(0.646916\pi\)
\(410\) 0 0
\(411\) 633844. 0.185088
\(412\) 0 0
\(413\) 466789. 0.134662
\(414\) 0 0
\(415\) −772730. −0.220246
\(416\) 0 0
\(417\) 1.89066e6 0.532442
\(418\) 0 0
\(419\) 4.14924e6 1.15461 0.577303 0.816530i \(-0.304105\pi\)
0.577303 + 0.816530i \(0.304105\pi\)
\(420\) 0 0
\(421\) −2.87508e6 −0.790578 −0.395289 0.918557i \(-0.629356\pi\)
−0.395289 + 0.918557i \(0.629356\pi\)
\(422\) 0 0
\(423\) −991028. −0.269299
\(424\) 0 0
\(425\) 1.87341e6 0.503107
\(426\) 0 0
\(427\) 869056. 0.230663
\(428\) 0 0
\(429\) −879510. −0.230726
\(430\) 0 0
\(431\) −5.02183e6 −1.30217 −0.651086 0.759004i \(-0.725686\pi\)
−0.651086 + 0.759004i \(0.725686\pi\)
\(432\) 0 0
\(433\) −5.92395e6 −1.51842 −0.759210 0.650846i \(-0.774414\pi\)
−0.759210 + 0.650846i \(0.774414\pi\)
\(434\) 0 0
\(435\) −1.56630e6 −0.396874
\(436\) 0 0
\(437\) −9.58121e6 −2.40003
\(438\) 0 0
\(439\) −1.14648e6 −0.283926 −0.141963 0.989872i \(-0.545341\pi\)
−0.141963 + 0.989872i \(0.545341\pi\)
\(440\) 0 0
\(441\) −1.25966e6 −0.308431
\(442\) 0 0
\(443\) 4.86693e6 1.17827 0.589137 0.808033i \(-0.299468\pi\)
0.589137 + 0.808033i \(0.299468\pi\)
\(444\) 0 0
\(445\) 1.24865e6 0.298911
\(446\) 0 0
\(447\) 2.10537e6 0.498378
\(448\) 0 0
\(449\) 4.33906e6 1.01573 0.507867 0.861436i \(-0.330434\pi\)
0.507867 + 0.861436i \(0.330434\pi\)
\(450\) 0 0
\(451\) 1.83751e6 0.425390
\(452\) 0 0
\(453\) 430743. 0.0986217
\(454\) 0 0
\(455\) −145668. −0.0329865
\(456\) 0 0
\(457\) −1.40019e6 −0.313615 −0.156808 0.987629i \(-0.550120\pi\)
−0.156808 + 0.987629i \(0.550120\pi\)
\(458\) 0 0
\(459\) −504814. −0.111841
\(460\) 0 0
\(461\) −4.62462e6 −1.01350 −0.506750 0.862093i \(-0.669153\pi\)
−0.506750 + 0.862093i \(0.669153\pi\)
\(462\) 0 0
\(463\) 592103. 0.128364 0.0641822 0.997938i \(-0.479556\pi\)
0.0641822 + 0.997938i \(0.479556\pi\)
\(464\) 0 0
\(465\) −1.15573e6 −0.247869
\(466\) 0 0
\(467\) −7.12843e6 −1.51252 −0.756261 0.654269i \(-0.772976\pi\)
−0.756261 + 0.654269i \(0.772976\pi\)
\(468\) 0 0
\(469\) −662762. −0.139132
\(470\) 0 0
\(471\) 2.93298e6 0.609195
\(472\) 0 0
\(473\) 2.46435e6 0.506465
\(474\) 0 0
\(475\) 7.14249e6 1.45250
\(476\) 0 0
\(477\) 1.36603e6 0.274893
\(478\) 0 0
\(479\) 1.72230e6 0.342980 0.171490 0.985186i \(-0.445142\pi\)
0.171490 + 0.985186i \(0.445142\pi\)
\(480\) 0 0
\(481\) 1.92639e6 0.379648
\(482\) 0 0
\(483\) −1.15736e6 −0.225736
\(484\) 0 0
\(485\) 1.40891e6 0.271974
\(486\) 0 0
\(487\) 7.89178e6 1.50783 0.753915 0.656972i \(-0.228163\pi\)
0.753915 + 0.656972i \(0.228163\pi\)
\(488\) 0 0
\(489\) 3.80758e6 0.720073
\(490\) 0 0
\(491\) 653436. 0.122320 0.0611602 0.998128i \(-0.480520\pi\)
0.0611602 + 0.998128i \(0.480520\pi\)
\(492\) 0 0
\(493\) −5.88315e6 −1.09017
\(494\) 0 0
\(495\) −807974. −0.148212
\(496\) 0 0
\(497\) −1.26164e6 −0.229110
\(498\) 0 0
\(499\) −4.37171e6 −0.785960 −0.392980 0.919547i \(-0.628556\pi\)
−0.392980 + 0.919547i \(0.628556\pi\)
\(500\) 0 0
\(501\) −2.70597e6 −0.481646
\(502\) 0 0
\(503\) −3.95604e6 −0.697173 −0.348586 0.937277i \(-0.613338\pi\)
−0.348586 + 0.937277i \(0.613338\pi\)
\(504\) 0 0
\(505\) −560642. −0.0978266
\(506\) 0 0
\(507\) −2.97917e6 −0.514725
\(508\) 0 0
\(509\) −6.01043e6 −1.02828 −0.514140 0.857706i \(-0.671889\pi\)
−0.514140 + 0.857706i \(0.671889\pi\)
\(510\) 0 0
\(511\) −2.07647e6 −0.351781
\(512\) 0 0
\(513\) −1.92463e6 −0.322890
\(514\) 0 0
\(515\) 1.20740e6 0.200601
\(516\) 0 0
\(517\) −5.95781e6 −0.980303
\(518\) 0 0
\(519\) 4.38216e6 0.714118
\(520\) 0 0
\(521\) −6.95647e6 −1.12278 −0.561390 0.827551i \(-0.689733\pi\)
−0.561390 + 0.827551i \(0.689733\pi\)
\(522\) 0 0
\(523\) −7.73556e6 −1.23662 −0.618312 0.785933i \(-0.712183\pi\)
−0.618312 + 0.785933i \(0.712183\pi\)
\(524\) 0 0
\(525\) 862774. 0.136615
\(526\) 0 0
\(527\) −4.34100e6 −0.680869
\(528\) 0 0
\(529\) 6.73406e6 1.04625
\(530\) 0 0
\(531\) −1.06704e6 −0.164227
\(532\) 0 0
\(533\) −757278. −0.115462
\(534\) 0 0
\(535\) −659069. −0.0995511
\(536\) 0 0
\(537\) 4.49634e6 0.672858
\(538\) 0 0
\(539\) −7.57278e6 −1.12275
\(540\) 0 0
\(541\) −8.51945e6 −1.25146 −0.625732 0.780038i \(-0.715200\pi\)
−0.625732 + 0.780038i \(0.715200\pi\)
\(542\) 0 0
\(543\) 7.56277e6 1.10073
\(544\) 0 0
\(545\) −3.79271e6 −0.546964
\(546\) 0 0
\(547\) 8.97125e6 1.28199 0.640995 0.767545i \(-0.278522\pi\)
0.640995 + 0.767545i \(0.278522\pi\)
\(548\) 0 0
\(549\) −1.98658e6 −0.281304
\(550\) 0 0
\(551\) −2.24299e7 −3.14737
\(552\) 0 0
\(553\) −3.47736e6 −0.483545
\(554\) 0 0
\(555\) 1.76970e6 0.243876
\(556\) 0 0
\(557\) 2.53509e6 0.346223 0.173112 0.984902i \(-0.444618\pi\)
0.173112 + 0.984902i \(0.444618\pi\)
\(558\) 0 0
\(559\) −1.01561e6 −0.137467
\(560\) 0 0
\(561\) −3.03481e6 −0.407122
\(562\) 0 0
\(563\) 2.58664e6 0.343926 0.171963 0.985103i \(-0.444989\pi\)
0.171963 + 0.985103i \(0.444989\pi\)
\(564\) 0 0
\(565\) −3.98259e6 −0.524861
\(566\) 0 0
\(567\) −232485. −0.0303695
\(568\) 0 0
\(569\) 8.86488e6 1.14787 0.573934 0.818901i \(-0.305416\pi\)
0.573934 + 0.818901i \(0.305416\pi\)
\(570\) 0 0
\(571\) −1.07428e6 −0.137888 −0.0689439 0.997621i \(-0.521963\pi\)
−0.0689439 + 0.997621i \(0.521963\pi\)
\(572\) 0 0
\(573\) −4.31398e6 −0.548898
\(574\) 0 0
\(575\) −9.81812e6 −1.23839
\(576\) 0 0
\(577\) 2.69414e6 0.336884 0.168442 0.985712i \(-0.446126\pi\)
0.168442 + 0.985712i \(0.446126\pi\)
\(578\) 0 0
\(579\) 9.07134e6 1.12454
\(580\) 0 0
\(581\) −1.33668e6 −0.164281
\(582\) 0 0
\(583\) 8.21220e6 1.00066
\(584\) 0 0
\(585\) 332985. 0.0402285
\(586\) 0 0
\(587\) 4.97659e6 0.596124 0.298062 0.954547i \(-0.403660\pi\)
0.298062 + 0.954547i \(0.403660\pi\)
\(588\) 0 0
\(589\) −1.65503e7 −1.96571
\(590\) 0 0
\(591\) 4.12662e6 0.485989
\(592\) 0 0
\(593\) 4.50238e6 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(594\) 0 0
\(595\) −502639. −0.0582055
\(596\) 0 0
\(597\) 1.90920e6 0.219238
\(598\) 0 0
\(599\) −6.54197e6 −0.744975 −0.372488 0.928037i \(-0.621495\pi\)
−0.372488 + 0.928037i \(0.621495\pi\)
\(600\) 0 0
\(601\) 6.08530e6 0.687221 0.343610 0.939112i \(-0.388350\pi\)
0.343610 + 0.939112i \(0.388350\pi\)
\(602\) 0 0
\(603\) 1.51502e6 0.169677
\(604\) 0 0
\(605\) −1.55827e6 −0.173083
\(606\) 0 0
\(607\) −2.60935e6 −0.287449 −0.143725 0.989618i \(-0.545908\pi\)
−0.143725 + 0.989618i \(0.545908\pi\)
\(608\) 0 0
\(609\) −2.70941e6 −0.296027
\(610\) 0 0
\(611\) 2.45535e6 0.266079
\(612\) 0 0
\(613\) −1.05839e7 −1.13762 −0.568809 0.822470i \(-0.692596\pi\)
−0.568809 + 0.822470i \(0.692596\pi\)
\(614\) 0 0
\(615\) −695684. −0.0741693
\(616\) 0 0
\(617\) −4.53956e6 −0.480065 −0.240033 0.970765i \(-0.577158\pi\)
−0.240033 + 0.970765i \(0.577158\pi\)
\(618\) 0 0
\(619\) −1.13246e7 −1.18794 −0.593971 0.804487i \(-0.702441\pi\)
−0.593971 + 0.804487i \(0.702441\pi\)
\(620\) 0 0
\(621\) 2.64562e6 0.275295
\(622\) 0 0
\(623\) 2.15994e6 0.222957
\(624\) 0 0
\(625\) 6.00779e6 0.615198
\(626\) 0 0
\(627\) −1.15704e7 −1.17538
\(628\) 0 0
\(629\) 6.64715e6 0.669899
\(630\) 0 0
\(631\) 1.19337e7 1.19317 0.596584 0.802551i \(-0.296524\pi\)
0.596584 + 0.802551i \(0.296524\pi\)
\(632\) 0 0
\(633\) −3.97336e6 −0.394138
\(634\) 0 0
\(635\) 2.19170e6 0.215698
\(636\) 0 0
\(637\) 3.12091e6 0.304743
\(638\) 0 0
\(639\) 2.88400e6 0.279410
\(640\) 0 0
\(641\) −9.98183e6 −0.959545 −0.479772 0.877393i \(-0.659281\pi\)
−0.479772 + 0.877393i \(0.659281\pi\)
\(642\) 0 0
\(643\) 6.13762e6 0.585427 0.292713 0.956200i \(-0.405442\pi\)
0.292713 + 0.956200i \(0.405442\pi\)
\(644\) 0 0
\(645\) −933008. −0.0883052
\(646\) 0 0
\(647\) 6.41984e6 0.602925 0.301463 0.953478i \(-0.402525\pi\)
0.301463 + 0.953478i \(0.402525\pi\)
\(648\) 0 0
\(649\) −6.41477e6 −0.597818
\(650\) 0 0
\(651\) −1.99919e6 −0.184885
\(652\) 0 0
\(653\) −8.30695e6 −0.762357 −0.381179 0.924501i \(-0.624482\pi\)
−0.381179 + 0.924501i \(0.624482\pi\)
\(654\) 0 0
\(655\) 5.91750e6 0.538934
\(656\) 0 0
\(657\) 4.74662e6 0.429014
\(658\) 0 0
\(659\) −9.79907e6 −0.878965 −0.439482 0.898251i \(-0.644838\pi\)
−0.439482 + 0.898251i \(0.644838\pi\)
\(660\) 0 0
\(661\) −5.74303e6 −0.511255 −0.255628 0.966775i \(-0.582282\pi\)
−0.255628 + 0.966775i \(0.582282\pi\)
\(662\) 0 0
\(663\) 1.25072e6 0.110503
\(664\) 0 0
\(665\) −1.91634e6 −0.168042
\(666\) 0 0
\(667\) 3.08323e7 2.68343
\(668\) 0 0
\(669\) −4.29670e6 −0.371167
\(670\) 0 0
\(671\) −1.19428e7 −1.02400
\(672\) 0 0
\(673\) −5.79225e6 −0.492957 −0.246479 0.969148i \(-0.579274\pi\)
−0.246479 + 0.969148i \(0.579274\pi\)
\(674\) 0 0
\(675\) −1.97222e6 −0.166608
\(676\) 0 0
\(677\) −2.17998e7 −1.82802 −0.914010 0.405692i \(-0.867030\pi\)
−0.914010 + 0.405692i \(0.867030\pi\)
\(678\) 0 0
\(679\) 2.43714e6 0.202865
\(680\) 0 0
\(681\) −652680. −0.0539303
\(682\) 0 0
\(683\) −5.02655e6 −0.412305 −0.206152 0.978520i \(-0.566094\pi\)
−0.206152 + 0.978520i \(0.566094\pi\)
\(684\) 0 0
\(685\) −1.44267e6 −0.117474
\(686\) 0 0
\(687\) 7.37929e6 0.596517
\(688\) 0 0
\(689\) −3.38444e6 −0.271605
\(690\) 0 0
\(691\) −1.17895e7 −0.939291 −0.469645 0.882855i \(-0.655618\pi\)
−0.469645 + 0.882855i \(0.655618\pi\)
\(692\) 0 0
\(693\) −1.39764e6 −0.110551
\(694\) 0 0
\(695\) −4.30325e6 −0.337936
\(696\) 0 0
\(697\) −2.61305e6 −0.203735
\(698\) 0 0
\(699\) 17041.6 0.00131922
\(700\) 0 0
\(701\) 1.26771e6 0.0974370 0.0487185 0.998813i \(-0.484486\pi\)
0.0487185 + 0.998813i \(0.484486\pi\)
\(702\) 0 0
\(703\) 2.53427e7 1.93403
\(704\) 0 0
\(705\) 2.25564e6 0.170922
\(706\) 0 0
\(707\) −969805. −0.0729686
\(708\) 0 0
\(709\) 9.52142e6 0.711354 0.355677 0.934609i \(-0.384250\pi\)
0.355677 + 0.934609i \(0.384250\pi\)
\(710\) 0 0
\(711\) 7.94893e6 0.589705
\(712\) 0 0
\(713\) 2.27502e7 1.67595
\(714\) 0 0
\(715\) 2.00182e6 0.146440
\(716\) 0 0
\(717\) 4.56748e6 0.331802
\(718\) 0 0
\(719\) −2.41159e7 −1.73973 −0.869864 0.493292i \(-0.835793\pi\)
−0.869864 + 0.493292i \(0.835793\pi\)
\(720\) 0 0
\(721\) 2.08858e6 0.149628
\(722\) 0 0
\(723\) −851524. −0.0605831
\(724\) 0 0
\(725\) −2.29845e7 −1.62401
\(726\) 0 0
\(727\) 4.23660e6 0.297291 0.148646 0.988891i \(-0.452509\pi\)
0.148646 + 0.988891i \(0.452509\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −3.50445e6 −0.242564
\(732\) 0 0
\(733\) 1.18809e7 0.816750 0.408375 0.912814i \(-0.366096\pi\)
0.408375 + 0.912814i \(0.366096\pi\)
\(734\) 0 0
\(735\) 2.86707e6 0.195758
\(736\) 0 0
\(737\) 9.10789e6 0.617659
\(738\) 0 0
\(739\) 1.04722e7 0.705384 0.352692 0.935739i \(-0.385266\pi\)
0.352692 + 0.935739i \(0.385266\pi\)
\(740\) 0 0
\(741\) 4.76843e6 0.319029
\(742\) 0 0
\(743\) −2.31594e6 −0.153906 −0.0769530 0.997035i \(-0.524519\pi\)
−0.0769530 + 0.997035i \(0.524519\pi\)
\(744\) 0 0
\(745\) −4.79195e6 −0.316316
\(746\) 0 0
\(747\) 3.05553e6 0.200348
\(748\) 0 0
\(749\) −1.14007e6 −0.0742549
\(750\) 0 0
\(751\) 1.24358e7 0.804592 0.402296 0.915510i \(-0.368212\pi\)
0.402296 + 0.915510i \(0.368212\pi\)
\(752\) 0 0
\(753\) 1.20865e7 0.776806
\(754\) 0 0
\(755\) −980397. −0.0625943
\(756\) 0 0
\(757\) 2.94671e6 0.186895 0.0934475 0.995624i \(-0.470211\pi\)
0.0934475 + 0.995624i \(0.470211\pi\)
\(758\) 0 0
\(759\) 1.59048e7 1.00213
\(760\) 0 0
\(761\) −2.71350e7 −1.69851 −0.849257 0.527980i \(-0.822949\pi\)
−0.849257 + 0.527980i \(0.822949\pi\)
\(762\) 0 0
\(763\) −6.56069e6 −0.407979
\(764\) 0 0
\(765\) 1.14899e6 0.0709842
\(766\) 0 0
\(767\) 2.64367e6 0.162263
\(768\) 0 0
\(769\) −1.55459e7 −0.947982 −0.473991 0.880530i \(-0.657187\pi\)
−0.473991 + 0.880530i \(0.657187\pi\)
\(770\) 0 0
\(771\) 1.42813e7 0.865230
\(772\) 0 0
\(773\) 1.13507e7 0.683240 0.341620 0.939838i \(-0.389024\pi\)
0.341620 + 0.939838i \(0.389024\pi\)
\(774\) 0 0
\(775\) −1.69596e7 −1.01429
\(776\) 0 0
\(777\) 3.06126e6 0.181906
\(778\) 0 0
\(779\) −9.96240e6 −0.588194
\(780\) 0 0
\(781\) 1.73379e7 1.01711
\(782\) 0 0
\(783\) 6.19347e6 0.361018
\(784\) 0 0
\(785\) −6.67564e6 −0.386650
\(786\) 0 0
\(787\) −1.74714e7 −1.00552 −0.502759 0.864426i \(-0.667682\pi\)
−0.502759 + 0.864426i \(0.667682\pi\)
\(788\) 0 0
\(789\) −9.90549e6 −0.566478
\(790\) 0 0
\(791\) −6.88914e6 −0.391493
\(792\) 0 0
\(793\) 4.92192e6 0.277940
\(794\) 0 0
\(795\) −3.10916e6 −0.174472
\(796\) 0 0
\(797\) −1.94474e7 −1.08446 −0.542231 0.840229i \(-0.682420\pi\)
−0.542231 + 0.840229i \(0.682420\pi\)
\(798\) 0 0
\(799\) 8.47237e6 0.469503
\(800\) 0 0
\(801\) −4.93742e6 −0.271906
\(802\) 0 0
\(803\) 2.85355e7 1.56169
\(804\) 0 0
\(805\) 2.63422e6 0.143272
\(806\) 0 0
\(807\) 1.53131e7 0.827709
\(808\) 0 0
\(809\) −2.51681e7 −1.35201 −0.676005 0.736897i \(-0.736290\pi\)
−0.676005 + 0.736897i \(0.736290\pi\)
\(810\) 0 0
\(811\) −2.78670e7 −1.48778 −0.743890 0.668302i \(-0.767021\pi\)
−0.743890 + 0.668302i \(0.767021\pi\)
\(812\) 0 0
\(813\) −1.51046e7 −0.801460
\(814\) 0 0
\(815\) −8.66628e6 −0.457024
\(816\) 0 0
\(817\) −1.33609e7 −0.700297
\(818\) 0 0
\(819\) 576001. 0.0300064
\(820\) 0 0
\(821\) 1.86040e7 0.963270 0.481635 0.876372i \(-0.340043\pi\)
0.481635 + 0.876372i \(0.340043\pi\)
\(822\) 0 0
\(823\) 1.39034e7 0.715521 0.357761 0.933813i \(-0.383540\pi\)
0.357761 + 0.933813i \(0.383540\pi\)
\(824\) 0 0
\(825\) −1.18565e7 −0.606488
\(826\) 0 0
\(827\) 2.85989e7 1.45407 0.727034 0.686601i \(-0.240898\pi\)
0.727034 + 0.686601i \(0.240898\pi\)
\(828\) 0 0
\(829\) −2.09644e7 −1.05949 −0.529743 0.848158i \(-0.677712\pi\)
−0.529743 + 0.848158i \(0.677712\pi\)
\(830\) 0 0
\(831\) −8.65259e6 −0.434654
\(832\) 0 0
\(833\) 1.07690e7 0.537726
\(834\) 0 0
\(835\) 6.15895e6 0.305697
\(836\) 0 0
\(837\) 4.56998e6 0.225476
\(838\) 0 0
\(839\) −3.24925e7 −1.59359 −0.796797 0.604247i \(-0.793474\pi\)
−0.796797 + 0.604247i \(0.793474\pi\)
\(840\) 0 0
\(841\) 5.16681e7 2.51903
\(842\) 0 0
\(843\) −5.18499e6 −0.251292
\(844\) 0 0
\(845\) 6.78078e6 0.326691
\(846\) 0 0
\(847\) −2.69552e6 −0.129102
\(848\) 0 0
\(849\) −5.22218e6 −0.248646
\(850\) 0 0
\(851\) −3.48362e7 −1.64895
\(852\) 0 0
\(853\) 2.77561e7 1.30613 0.653065 0.757302i \(-0.273483\pi\)
0.653065 + 0.757302i \(0.273483\pi\)
\(854\) 0 0
\(855\) 4.38059e6 0.204935
\(856\) 0 0
\(857\) 3.26911e7 1.52047 0.760234 0.649649i \(-0.225084\pi\)
0.760234 + 0.649649i \(0.225084\pi\)
\(858\) 0 0
\(859\) −8.75427e6 −0.404797 −0.202398 0.979303i \(-0.564874\pi\)
−0.202398 + 0.979303i \(0.564874\pi\)
\(860\) 0 0
\(861\) −1.20340e6 −0.0553227
\(862\) 0 0
\(863\) −3.58575e7 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(864\) 0 0
\(865\) −9.97408e6 −0.453244
\(866\) 0 0
\(867\) −8.46302e6 −0.382365
\(868\) 0 0
\(869\) 4.77869e7 2.14664
\(870\) 0 0
\(871\) −3.75357e6 −0.167648
\(872\) 0 0
\(873\) −5.57109e6 −0.247403
\(874\) 0 0
\(875\) −4.23204e6 −0.186866
\(876\) 0 0
\(877\) 2.12181e7 0.931552 0.465776 0.884903i \(-0.345775\pi\)
0.465776 + 0.884903i \(0.345775\pi\)
\(878\) 0 0
\(879\) 1.05939e7 0.462470
\(880\) 0 0
\(881\) 3.68571e7 1.59986 0.799928 0.600095i \(-0.204871\pi\)
0.799928 + 0.600095i \(0.204871\pi\)
\(882\) 0 0
\(883\) −1.72459e7 −0.744360 −0.372180 0.928161i \(-0.621390\pi\)
−0.372180 + 0.928161i \(0.621390\pi\)
\(884\) 0 0
\(885\) 2.42865e6 0.104233
\(886\) 0 0
\(887\) −2.90215e7 −1.23854 −0.619270 0.785178i \(-0.712571\pi\)
−0.619270 + 0.785178i \(0.712571\pi\)
\(888\) 0 0
\(889\) 3.79123e6 0.160889
\(890\) 0 0
\(891\) 3.19489e6 0.134822
\(892\) 0 0
\(893\) 3.23014e7 1.35548
\(894\) 0 0
\(895\) −1.02340e7 −0.427057
\(896\) 0 0
\(897\) −6.55472e6 −0.272003
\(898\) 0 0
\(899\) 5.32589e7 2.19783
\(900\) 0 0
\(901\) −1.16783e7 −0.479254
\(902\) 0 0
\(903\) −1.61393e6 −0.0658666
\(904\) 0 0
\(905\) −1.72133e7 −0.698624
\(906\) 0 0
\(907\) 2.17240e7 0.876842 0.438421 0.898770i \(-0.355538\pi\)
0.438421 + 0.898770i \(0.355538\pi\)
\(908\) 0 0
\(909\) 2.21689e6 0.0889885
\(910\) 0 0
\(911\) 1.18167e7 0.471736 0.235868 0.971785i \(-0.424207\pi\)
0.235868 + 0.971785i \(0.424207\pi\)
\(912\) 0 0
\(913\) 1.83690e7 0.729306
\(914\) 0 0
\(915\) 4.52159e6 0.178541
\(916\) 0 0
\(917\) 1.02362e7 0.401989
\(918\) 0 0
\(919\) −1.08515e7 −0.423838 −0.211919 0.977287i \(-0.567971\pi\)
−0.211919 + 0.977287i \(0.567971\pi\)
\(920\) 0 0
\(921\) −2.84606e6 −0.110559
\(922\) 0 0
\(923\) −7.14533e6 −0.276069
\(924\) 0 0
\(925\) 2.59693e7 0.997944
\(926\) 0 0
\(927\) −4.77430e6 −0.182478
\(928\) 0 0
\(929\) −2.49688e7 −0.949203 −0.474601 0.880201i \(-0.657408\pi\)
−0.474601 + 0.880201i \(0.657408\pi\)
\(930\) 0 0
\(931\) 4.10573e7 1.55244
\(932\) 0 0
\(933\) −3.92093e6 −0.147464
\(934\) 0 0
\(935\) 6.90743e6 0.258397
\(936\) 0 0
\(937\) −4.20064e7 −1.56303 −0.781513 0.623889i \(-0.785552\pi\)
−0.781513 + 0.623889i \(0.785552\pi\)
\(938\) 0 0
\(939\) 2.96288e6 0.109660
\(940\) 0 0
\(941\) 3.01821e7 1.11116 0.555578 0.831464i \(-0.312497\pi\)
0.555578 + 0.831464i \(0.312497\pi\)
\(942\) 0 0
\(943\) 1.36944e7 0.501491
\(944\) 0 0
\(945\) 529151. 0.0192753
\(946\) 0 0
\(947\) −4.84746e7 −1.75646 −0.878232 0.478235i \(-0.841277\pi\)
−0.878232 + 0.478235i \(0.841277\pi\)
\(948\) 0 0
\(949\) −1.17601e7 −0.423883
\(950\) 0 0
\(951\) 7.86920e6 0.282149
\(952\) 0 0
\(953\) 1.12917e7 0.402741 0.201370 0.979515i \(-0.435460\pi\)
0.201370 + 0.979515i \(0.435460\pi\)
\(954\) 0 0
\(955\) 9.81888e6 0.348380
\(956\) 0 0
\(957\) 3.72335e7 1.31418
\(958\) 0 0
\(959\) −2.49555e6 −0.0876232
\(960\) 0 0
\(961\) 1.06690e7 0.372664
\(962\) 0 0
\(963\) 2.60609e6 0.0905573
\(964\) 0 0
\(965\) −2.06469e7 −0.713735
\(966\) 0 0
\(967\) 4.05647e7 1.39503 0.697513 0.716572i \(-0.254290\pi\)
0.697513 + 0.716572i \(0.254290\pi\)
\(968\) 0 0
\(969\) 1.64538e7 0.562934
\(970\) 0 0
\(971\) −1.23608e7 −0.420724 −0.210362 0.977624i \(-0.567464\pi\)
−0.210362 + 0.977624i \(0.567464\pi\)
\(972\) 0 0
\(973\) −7.44382e6 −0.252066
\(974\) 0 0
\(975\) 4.88634e6 0.164616
\(976\) 0 0
\(977\) 7.98701e6 0.267699 0.133850 0.991002i \(-0.457266\pi\)
0.133850 + 0.991002i \(0.457266\pi\)
\(978\) 0 0
\(979\) −2.96825e7 −0.989793
\(980\) 0 0
\(981\) 1.49971e7 0.497549
\(982\) 0 0
\(983\) 5.17855e6 0.170932 0.0854661 0.996341i \(-0.472762\pi\)
0.0854661 + 0.996341i \(0.472762\pi\)
\(984\) 0 0
\(985\) −9.39245e6 −0.308453
\(986\) 0 0
\(987\) 3.90184e6 0.127490
\(988\) 0 0
\(989\) 1.83661e7 0.597070
\(990\) 0 0
\(991\) 1.43782e7 0.465072 0.232536 0.972588i \(-0.425298\pi\)
0.232536 + 0.972588i \(0.425298\pi\)
\(992\) 0 0
\(993\) 8.09101e6 0.260393
\(994\) 0 0
\(995\) −4.34546e6 −0.139148
\(996\) 0 0
\(997\) 1.42316e7 0.453435 0.226717 0.973961i \(-0.427201\pi\)
0.226717 + 0.973961i \(0.427201\pi\)
\(998\) 0 0
\(999\) −6.99776e6 −0.221843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.6.a.bd.1.3 5
4.3 odd 2 768.6.a.bb.1.3 5
8.3 odd 2 768.6.a.bc.1.3 5
8.5 even 2 768.6.a.ba.1.3 5
16.3 odd 4 96.6.d.a.49.3 10
16.5 even 4 24.6.d.a.13.9 10
16.11 odd 4 96.6.d.a.49.8 10
16.13 even 4 24.6.d.a.13.10 yes 10
48.5 odd 4 72.6.d.d.37.2 10
48.11 even 4 288.6.d.d.145.6 10
48.29 odd 4 72.6.d.d.37.1 10
48.35 even 4 288.6.d.d.145.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.6.d.a.13.9 10 16.5 even 4
24.6.d.a.13.10 yes 10 16.13 even 4
72.6.d.d.37.1 10 48.29 odd 4
72.6.d.d.37.2 10 48.5 odd 4
96.6.d.a.49.3 10 16.3 odd 4
96.6.d.a.49.8 10 16.11 odd 4
288.6.d.d.145.5 10 48.35 even 4
288.6.d.d.145.6 10 48.11 even 4
768.6.a.ba.1.3 5 8.5 even 2
768.6.a.bb.1.3 5 4.3 odd 2
768.6.a.bc.1.3 5 8.3 odd 2
768.6.a.bd.1.3 5 1.1 even 1 trivial