Properties

Label 2-75712-1.1-c1-0-22
Degree $2$
Conductor $75712$
Sign $1$
Analytic cond. $604.563$
Root an. cond. $24.5878$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 7-s − 2·9-s − 5·11-s + 2·15-s + 2·17-s + 4·19-s − 21-s + 9·23-s − 25-s + 5·27-s + 5·31-s + 5·33-s − 2·35-s + 3·37-s − 5·41-s − 4·43-s + 4·45-s + 13·47-s + 49-s − 2·51-s − 14·53-s + 10·55-s − 4·57-s + 6·59-s + 13·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.377·7-s − 2/3·9-s − 1.50·11-s + 0.516·15-s + 0.485·17-s + 0.917·19-s − 0.218·21-s + 1.87·23-s − 1/5·25-s + 0.962·27-s + 0.898·31-s + 0.870·33-s − 0.338·35-s + 0.493·37-s − 0.780·41-s − 0.609·43-s + 0.596·45-s + 1.89·47-s + 1/7·49-s − 0.280·51-s − 1.92·53-s + 1.34·55-s − 0.529·57-s + 0.781·59-s + 1.66·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75712\)    =    \(2^{6} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(604.563\)
Root analytic conductor: \(24.5878\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.434385102\)
\(L(\frac12)\) \(\approx\) \(1.434385102\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90541906444784, −13.62289293392512, −12.99369090975647, −12.45813981111550, −11.97105538684395, −11.54816579861896, −11.07679478752584, −10.74901142331811, −10.16243809008082, −9.565014939473029, −8.906762782948216, −8.268309589116438, −7.964151970573701, −7.479063993228093, −6.900876362945307, −6.285291835398984, −5.418332056170697, −5.256030530160023, −4.788487950555775, −4.003274148584850, −3.169026927151689, −2.920725269259789, −2.107861208035370, −0.9459741482668573, −0.5197876530363323, 0.5197876530363323, 0.9459741482668573, 2.107861208035370, 2.920725269259789, 3.169026927151689, 4.003274148584850, 4.788487950555775, 5.256030530160023, 5.418332056170697, 6.285291835398984, 6.900876362945307, 7.479063993228093, 7.964151970573701, 8.268309589116438, 8.906762782948216, 9.565014939473029, 10.16243809008082, 10.74901142331811, 11.07679478752584, 11.54816579861896, 11.97105538684395, 12.45813981111550, 12.99369090975647, 13.62289293392512, 13.90541906444784

Graph of the $Z$-function along the critical line