Properties

Label 2-75712-1.1-c1-0-17
Degree $2$
Conductor $75712$
Sign $1$
Analytic cond. $604.563$
Root an. cond. $24.5878$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s + 4·11-s − 2·17-s + 6·19-s + 2·21-s − 8·23-s − 5·25-s + 4·27-s − 2·29-s − 4·31-s − 8·33-s + 10·37-s + 10·41-s + 4·43-s + 4·47-s + 49-s + 4·51-s + 2·53-s − 12·57-s − 10·59-s + 8·61-s − 63-s + 8·67-s + 16·69-s + 6·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.485·17-s + 1.37·19-s + 0.436·21-s − 1.66·23-s − 25-s + 0.769·27-s − 0.371·29-s − 0.718·31-s − 1.39·33-s + 1.64·37-s + 1.56·41-s + 0.609·43-s + 0.583·47-s + 1/7·49-s + 0.560·51-s + 0.274·53-s − 1.58·57-s − 1.30·59-s + 1.02·61-s − 0.125·63-s + 0.977·67-s + 1.92·69-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75712\)    =    \(2^{6} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(604.563\)
Root analytic conductor: \(24.5878\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.347332558\)
\(L(\frac12)\) \(\approx\) \(1.347332558\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98830427984110, −13.70770612408389, −12.85852723780420, −12.43303048858608, −12.01545056852027, −11.51660982995108, −11.19545443865495, −10.75334307628670, −9.909850764115871, −9.570710233395468, −9.243172769143080, −8.471427559138929, −7.729548661958670, −7.415358806465589, −6.592062348676450, −6.262366107348887, −5.697536507937985, −5.456858875104289, −4.471675793045535, −4.070331716915960, −3.555741097609860, −2.635595270584109, −1.957582212657458, −1.063760353841250, −0.4813387031434684, 0.4813387031434684, 1.063760353841250, 1.957582212657458, 2.635595270584109, 3.555741097609860, 4.070331716915960, 4.471675793045535, 5.456858875104289, 5.697536507937985, 6.262366107348887, 6.592062348676450, 7.415358806465589, 7.729548661958670, 8.471427559138929, 9.243172769143080, 9.570710233395468, 9.909850764115871, 10.75334307628670, 11.19545443865495, 11.51660982995108, 12.01545056852027, 12.43303048858608, 12.85852723780420, 13.70770612408389, 13.98830427984110

Graph of the $Z$-function along the critical line