Properties

Label 2-738-1.1-c1-0-17
Degree $2$
Conductor $738$
Sign $-1$
Analytic cond. $5.89295$
Root an. cond. $2.42754$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 4·7-s + 8-s − 10-s − 4·11-s − 5·13-s − 4·14-s + 16-s − 17-s − 3·19-s − 20-s − 4·22-s + 8·23-s − 4·25-s − 5·26-s − 4·28-s + 7·31-s + 32-s − 34-s + 4·35-s − 4·37-s − 3·38-s − 40-s + 41-s − 6·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s + 0.353·8-s − 0.316·10-s − 1.20·11-s − 1.38·13-s − 1.06·14-s + 1/4·16-s − 0.242·17-s − 0.688·19-s − 0.223·20-s − 0.852·22-s + 1.66·23-s − 4/5·25-s − 0.980·26-s − 0.755·28-s + 1.25·31-s + 0.176·32-s − 0.171·34-s + 0.676·35-s − 0.657·37-s − 0.486·38-s − 0.158·40-s + 0.156·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(738\)    =    \(2 \cdot 3^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(5.89295\)
Root analytic conductor: \(2.42754\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 738,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 4 T + p T^{2} \) 1.37.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08266600804786671706131769377, −9.244347738098059429850983472640, −8.019240374239258929238557865380, −7.14649800311416056102761154095, −6.45057299417612122047272522502, −5.33330380381551699100541521377, −4.47420705672619953222926321067, −3.21932604526646441119983264062, −2.52983349963007098615023775562, 0, 2.52983349963007098615023775562, 3.21932604526646441119983264062, 4.47420705672619953222926321067, 5.33330380381551699100541521377, 6.45057299417612122047272522502, 7.14649800311416056102761154095, 8.019240374239258929238557865380, 9.244347738098059429850983472640, 10.08266600804786671706131769377

Graph of the $Z$-function along the critical line