Properties

Label 2-72828-1.1-c1-0-6
Degree $2$
Conductor $72828$
Sign $1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s + 3·11-s − 13-s − 7·19-s − 23-s + 4·25-s + 2·29-s − 4·31-s − 3·35-s + 4·37-s − 7·41-s − 5·43-s + 4·47-s + 49-s + 4·53-s + 9·55-s − 12·59-s + 12·61-s − 3·65-s + 8·67-s + 4·71-s − 16·73-s − 3·77-s − 4·79-s + 16·83-s + 91-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s + 0.904·11-s − 0.277·13-s − 1.60·19-s − 0.208·23-s + 4/5·25-s + 0.371·29-s − 0.718·31-s − 0.507·35-s + 0.657·37-s − 1.09·41-s − 0.762·43-s + 0.583·47-s + 1/7·49-s + 0.549·53-s + 1.21·55-s − 1.56·59-s + 1.53·61-s − 0.372·65-s + 0.977·67-s + 0.474·71-s − 1.87·73-s − 0.341·77-s − 0.450·79-s + 1.75·83-s + 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.661742309\)
\(L(\frac12)\) \(\approx\) \(2.661742309\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20285646511399, −13.53701776169394, −13.04717574127122, −12.85508759080233, −12.02692686802321, −11.76970526837103, −10.92858109900743, −10.49911677277416, −10.03497321552204, −9.566842526088372, −9.077767887466242, −8.650220699534151, −8.067436612249274, −7.249824386851912, −6.650683262325393, −6.371154118944900, −5.842302252182183, −5.269307596339400, −4.592391920878602, −4.000548498825961, −3.359562043988918, −2.544452721359389, −2.012565477759382, −1.506940891677032, −0.5194067772780255, 0.5194067772780255, 1.506940891677032, 2.012565477759382, 2.544452721359389, 3.359562043988918, 4.000548498825961, 4.592391920878602, 5.269307596339400, 5.842302252182183, 6.371154118944900, 6.650683262325393, 7.249824386851912, 8.067436612249274, 8.650220699534151, 9.077767887466242, 9.566842526088372, 10.03497321552204, 10.49911677277416, 10.92858109900743, 11.76970526837103, 12.02692686802321, 12.85508759080233, 13.04717574127122, 13.53701776169394, 14.20285646511399

Graph of the $Z$-function along the critical line