Properties

Label 2-72828-1.1-c1-0-23
Degree $2$
Conductor $72828$
Sign $-1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·11-s + 6·13-s − 6·19-s − 23-s − 5·25-s − 3·29-s − 3·37-s − 6·41-s − 7·43-s − 12·47-s + 49-s + 3·53-s + 10·59-s − 2·61-s − 4·67-s − 3·71-s + 8·73-s + 4·77-s + 7·79-s + 6·83-s + 10·89-s + 6·91-s + 8·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.20·11-s + 1.66·13-s − 1.37·19-s − 0.208·23-s − 25-s − 0.557·29-s − 0.493·37-s − 0.937·41-s − 1.06·43-s − 1.75·47-s + 1/7·49-s + 0.412·53-s + 1.30·59-s − 0.256·61-s − 0.488·67-s − 0.356·71-s + 0.936·73-s + 0.455·77-s + 0.787·79-s + 0.658·83-s + 1.05·89-s + 0.628·91-s + 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.43574068792155, −13.66122239903335, −13.46966590611814, −12.99583561430551, −12.21691342577250, −11.82760663895133, −11.29751946003073, −10.99645792108384, −10.30685946257512, −9.877038544872469, −9.116612476394839, −8.776477897183930, −8.234733414194977, −7.905904901525256, −6.944214904869175, −6.533159725064554, −6.164728087873190, −5.530658324948443, −4.827532504228898, −4.166645696413697, −3.661029056847679, −3.337871638593400, −2.063248919383287, −1.775246415766502, −1.031723968515204, 0, 1.031723968515204, 1.775246415766502, 2.063248919383287, 3.337871638593400, 3.661029056847679, 4.166645696413697, 4.827532504228898, 5.530658324948443, 6.164728087873190, 6.533159725064554, 6.944214904869175, 7.905904901525256, 8.234733414194977, 8.776477897183930, 9.116612476394839, 9.877038544872469, 10.30685946257512, 10.99645792108384, 11.29751946003073, 11.82760663895133, 12.21691342577250, 12.99583561430551, 13.46966590611814, 13.66122239903335, 14.43574068792155

Graph of the $Z$-function along the critical line