Properties

Label 2-71632-1.1-c1-0-17
Degree $2$
Conductor $71632$
Sign $-1$
Analytic cond. $571.984$
Root an. cond. $23.9161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·5-s − 7-s + 6·9-s + 2·13-s − 6·15-s − 3·21-s − 2·23-s − 25-s + 9·27-s − 6·29-s + 4·31-s + 2·35-s − 37-s + 6·39-s + 9·41-s + 2·43-s − 12·45-s + 9·47-s − 6·49-s + 53-s − 8·59-s + 8·61-s − 6·63-s − 4·65-s − 8·67-s − 6·69-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.894·5-s − 0.377·7-s + 2·9-s + 0.554·13-s − 1.54·15-s − 0.654·21-s − 0.417·23-s − 1/5·25-s + 1.73·27-s − 1.11·29-s + 0.718·31-s + 0.338·35-s − 0.164·37-s + 0.960·39-s + 1.40·41-s + 0.304·43-s − 1.78·45-s + 1.31·47-s − 6/7·49-s + 0.137·53-s − 1.04·59-s + 1.02·61-s − 0.755·63-s − 0.496·65-s − 0.977·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71632\)    =    \(2^{4} \cdot 11^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(571.984\)
Root analytic conductor: \(23.9161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 71632,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.42925564926692, −13.87725817041510, −13.42364409466114, −13.03199058874038, −12.47793008058441, −11.97276596725341, −11.37578262650177, −10.77417366406868, −10.25062131624918, −9.585848451964496, −9.228481989639367, −8.770935123249472, −8.133794291435524, −7.860151888098758, −7.362095475081118, −6.860808277502487, −6.084142719902764, −5.523399273983824, −4.436041587421007, −4.138395980668925, −3.656241446865115, −3.065055824320154, −2.560395743602852, −1.835068168462265, −1.081338267682880, 0, 1.081338267682880, 1.835068168462265, 2.560395743602852, 3.065055824320154, 3.656241446865115, 4.138395980668925, 4.436041587421007, 5.523399273983824, 6.084142719902764, 6.860808277502487, 7.362095475081118, 7.860151888098758, 8.133794291435524, 8.770935123249472, 9.228481989639367, 9.585848451964496, 10.25062131624918, 10.77417366406868, 11.37578262650177, 11.97276596725341, 12.47793008058441, 13.03199058874038, 13.42364409466114, 13.87725817041510, 14.42925564926692

Graph of the $Z$-function along the critical line