Properties

Label 2-71632-1.1-c1-0-16
Degree $2$
Conductor $71632$
Sign $-1$
Analytic cond. $571.984$
Root an. cond. $23.9161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s − 2·7-s + 9-s + 2·13-s − 2·15-s + 3·17-s + 2·19-s + 4·21-s + 6·23-s − 4·25-s + 4·27-s + 2·29-s + 6·31-s − 2·35-s + 37-s − 4·39-s + 8·43-s + 45-s + 9·47-s − 3·49-s − 6·51-s − 4·57-s − 12·59-s + 8·61-s − 2·63-s + 2·65-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.516·15-s + 0.727·17-s + 0.458·19-s + 0.872·21-s + 1.25·23-s − 4/5·25-s + 0.769·27-s + 0.371·29-s + 1.07·31-s − 0.338·35-s + 0.164·37-s − 0.640·39-s + 1.21·43-s + 0.149·45-s + 1.31·47-s − 3/7·49-s − 0.840·51-s − 0.529·57-s − 1.56·59-s + 1.02·61-s − 0.251·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71632\)    =    \(2^{4} \cdot 11^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(571.984\)
Root analytic conductor: \(23.9161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 71632,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30715522592064, −13.65896782540739, −13.46592287438270, −12.71974409922544, −12.33800570672621, −11.89362227301141, −11.35048386013819, −10.87351330694691, −10.36925046219567, −9.957996765106372, −9.325599596548454, −8.962308934944655, −8.197448034966081, −7.593468477671252, −6.993207607821797, −6.373664136868738, −6.084143243604720, −5.534979132927043, −5.101744152042133, −4.386463522979219, −3.725755311490623, −2.953317626651763, −2.553320884013554, −1.326345782806096, −0.9340903666192820, 0, 0.9340903666192820, 1.326345782806096, 2.553320884013554, 2.953317626651763, 3.725755311490623, 4.386463522979219, 5.101744152042133, 5.534979132927043, 6.084143243604720, 6.373664136868738, 6.993207607821797, 7.593468477671252, 8.197448034966081, 8.962308934944655, 9.325599596548454, 9.957996765106372, 10.36925046219567, 10.87351330694691, 11.35048386013819, 11.89362227301141, 12.33800570672621, 12.71974409922544, 13.46592287438270, 13.65896782540739, 14.30715522592064

Graph of the $Z$-function along the critical line