Properties

Label 2-6e3-216.11-c1-0-18
Degree $2$
Conductor $216$
Sign $0.338 - 0.940i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.821 + 1.15i)2-s + (1.73 − 0.0701i)3-s + (−0.649 + 1.89i)4-s + (0.426 + 0.155i)5-s + (1.50 + 1.93i)6-s + (−1.28 − 0.225i)7-s + (−2.71 + 0.807i)8-s + (2.99 − 0.242i)9-s + (0.171 + 0.618i)10-s + (0.00602 + 0.0165i)11-s + (−0.990 + 3.31i)12-s + (−1.43 − 1.71i)13-s + (−0.793 − 1.66i)14-s + (0.749 + 0.238i)15-s + (−3.15 − 2.45i)16-s + (1.27 − 0.734i)17-s + ⋯
L(s)  = 1  + (0.581 + 0.813i)2-s + (0.999 − 0.0405i)3-s + (−0.324 + 0.945i)4-s + (0.190 + 0.0694i)5-s + (0.613 + 0.789i)6-s + (−0.484 − 0.0854i)7-s + (−0.958 + 0.285i)8-s + (0.996 − 0.0809i)9-s + (0.0543 + 0.195i)10-s + (0.00181 + 0.00499i)11-s + (−0.286 + 0.958i)12-s + (−0.398 − 0.474i)13-s + (−0.211 − 0.443i)14-s + (0.193 + 0.0616i)15-s + (−0.789 − 0.614i)16-s + (0.308 − 0.178i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.338 - 0.940i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.338 - 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.338 - 0.940i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.338 - 0.940i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.63607 + 1.15018i\)
\(L(\frac12)\) \(\approx\) \(1.63607 + 1.15018i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.821 - 1.15i)T \)
3 \( 1 + (-1.73 + 0.0701i)T \)
good5 \( 1 + (-0.426 - 0.155i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.28 + 0.225i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-0.00602 - 0.0165i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (1.43 + 1.71i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.27 + 0.734i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.677 + 1.17i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.369 + 2.09i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-5.56 - 4.67i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (8.87 - 1.56i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-4.58 + 2.64i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.56 - 1.86i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (10.1 - 3.71i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.791 + 4.48i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 10.4T + 53T^{2} \)
59 \( 1 + (3.75 - 10.3i)T + (-45.1 - 37.9i)T^{2} \)
61 \( 1 + (-8.87 - 1.56i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (-3.70 + 3.10i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (5.03 + 8.72i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (0.339 - 0.587i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.19 - 6.19i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-1.29 + 1.53i)T + (-14.4 - 81.7i)T^{2} \)
89 \( 1 + (0.103 + 0.0598i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (10.4 - 3.81i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87827080767831139269462198948, −11.97408875380128504788988921518, −10.30414558266341159839157096558, −9.333173274561899341898254832094, −8.372369982568431320049452298059, −7.42515931725830454442368854969, −6.52366144850818761902653398812, −5.14071439137778762519505325343, −3.80879315743677042086693565306, −2.69393366403258973188999990618, 1.88492126843989388520310866738, 3.19888809794751246755119065260, 4.25274910000894367755671482037, 5.65895418004332531736670328731, 7.01269782960559767956042241022, 8.392397549479710193454860599728, 9.601627190104834664232010006020, 9.898039802523683247206725135707, 11.27515634274707439744216357373, 12.31505697791795762047292898491

Graph of the $Z$-function along the critical line