# Properties

 Label 216.11 Modulus $216$ Conductor $216$ Order $18$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(216)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([9,9,13]))

pari: [g,chi] = znchar(Mod(11,216))

## Basic properties

 Modulus: $$216$$ Conductor: $$216$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 216.v

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(55,109,137)$$ → $$(-1,-1,e\left(\frac{13}{18}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.18.396521139274783615537700143104.1

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 216 }(11,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{216}(11,\cdot)) = \sum_{r\in \Z/216\Z} \chi_{216}(11,r) e\left(\frac{r}{108}\right) = -0.0$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 216 }(11,·),\chi_{ 216 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{216}(11,\cdot),\chi_{216}(1,\cdot)) = \sum_{r\in \Z/216\Z} \chi_{216}(11,r) \chi_{216}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 216 }(11,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{216}(11,·)) = \sum_{r \in \Z/216\Z} \chi_{216}(11,r) e\left(\frac{1 r + 2 r^{-1}}{216}\right) = 16.3627011962+-19.5003079351i$$