Properties

Label 2-69360-1.1-c1-0-37
Degree $2$
Conductor $69360$
Sign $1$
Analytic cond. $553.842$
Root an. cond. $23.5338$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 7-s + 9-s − 3·11-s + 6·13-s − 15-s + 5·19-s − 21-s + 4·23-s + 25-s − 27-s − 5·29-s + 8·31-s + 3·33-s + 35-s + 7·37-s − 6·39-s − 5·41-s + 45-s − 3·47-s − 6·49-s + 3·53-s − 3·55-s − 5·57-s + 12·59-s − 4·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.904·11-s + 1.66·13-s − 0.258·15-s + 1.14·19-s − 0.218·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.928·29-s + 1.43·31-s + 0.522·33-s + 0.169·35-s + 1.15·37-s − 0.960·39-s − 0.780·41-s + 0.149·45-s − 0.437·47-s − 6/7·49-s + 0.412·53-s − 0.404·55-s − 0.662·57-s + 1.56·59-s − 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69360\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(553.842\)
Root analytic conductor: \(23.5338\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.814341144\)
\(L(\frac12)\) \(\approx\) \(2.814341144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
17 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02292285180380, −13.46127375808869, −13.23640074198361, −12.84276592606941, −12.00028091483585, −11.56613426631440, −11.11670766115920, −10.75710685940226, −10.12373772654667, −9.682850955914796, −9.122414043174762, −8.370097157559691, −8.116089681157993, −7.417724564840490, −6.788548205668296, −6.314340793761822, −5.559312091065587, −5.447357420991644, −4.685849350298418, −4.112906720331817, −3.274296325112707, −2.839580397628365, −1.886891167480890, −1.237156464266293, −0.6435312591257324, 0.6435312591257324, 1.237156464266293, 1.886891167480890, 2.839580397628365, 3.274296325112707, 4.112906720331817, 4.685849350298418, 5.447357420991644, 5.559312091065587, 6.314340793761822, 6.788548205668296, 7.417724564840490, 8.116089681157993, 8.370097157559691, 9.122414043174762, 9.682850955914796, 10.12373772654667, 10.75710685940226, 11.11670766115920, 11.56613426631440, 12.00028091483585, 12.84276592606941, 13.23640074198361, 13.46127375808869, 14.02292285180380

Graph of the $Z$-function along the critical line