Properties

Label 2-6840-1.1-c1-0-51
Degree $2$
Conductor $6840$
Sign $-1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 2·11-s − 4·13-s + 2·17-s − 19-s + 25-s + 4·29-s + 8·31-s + 2·35-s − 8·37-s + 12·41-s − 6·43-s − 3·49-s + 2·53-s − 2·55-s + 2·61-s + 4·65-s − 8·67-s − 8·71-s + 6·73-s − 4·77-s + 8·79-s + 8·83-s − 2·85-s + 4·89-s + 8·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 0.603·11-s − 1.10·13-s + 0.485·17-s − 0.229·19-s + 1/5·25-s + 0.742·29-s + 1.43·31-s + 0.338·35-s − 1.31·37-s + 1.87·41-s − 0.914·43-s − 3/7·49-s + 0.274·53-s − 0.269·55-s + 0.256·61-s + 0.496·65-s − 0.977·67-s − 0.949·71-s + 0.702·73-s − 0.455·77-s + 0.900·79-s + 0.878·83-s − 0.216·85-s + 0.423·89-s + 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64319757853443199958034364576, −6.79552101067111065865489660245, −6.44204088330689517018139465192, −5.46673843789851780699537741895, −4.69176338260732513073358742865, −3.98675979114130661644889612077, −3.14091383291310148117946089007, −2.45915554727424092767865010155, −1.17092340766453562714934748288, 0, 1.17092340766453562714934748288, 2.45915554727424092767865010155, 3.14091383291310148117946089007, 3.98675979114130661644889612077, 4.69176338260732513073358742865, 5.46673843789851780699537741895, 6.44204088330689517018139465192, 6.79552101067111065865489660245, 7.64319757853443199958034364576

Graph of the $Z$-function along the critical line