Properties

Label 2-6660-1.1-c1-0-26
Degree $2$
Conductor $6660$
Sign $1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 4·11-s + 5·13-s + 2·17-s + 2·19-s + 6·23-s + 25-s − 3·29-s − 2·31-s + 2·35-s − 37-s + 7·43-s − 3·47-s − 3·49-s + 9·53-s − 4·55-s + 3·59-s + 6·61-s + 5·65-s − 12·71-s + 6·73-s − 8·77-s + 4·79-s − 83-s + 2·85-s − 13·89-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 1.20·11-s + 1.38·13-s + 0.485·17-s + 0.458·19-s + 1.25·23-s + 1/5·25-s − 0.557·29-s − 0.359·31-s + 0.338·35-s − 0.164·37-s + 1.06·43-s − 0.437·47-s − 3/7·49-s + 1.23·53-s − 0.539·55-s + 0.390·59-s + 0.768·61-s + 0.620·65-s − 1.42·71-s + 0.702·73-s − 0.911·77-s + 0.450·79-s − 0.109·83-s + 0.216·85-s − 1.37·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.623712886\)
\(L(\frac12)\) \(\approx\) \(2.623712886\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.986480265292074962773741402939, −7.38921343011771736374587218336, −6.60249953464733821536703920981, −5.55430506116869532032436401679, −5.42902150316550431561249953514, −4.46721820413265441084032216974, −3.52134866907032351090889184321, −2.74416633538060800282655846389, −1.76068487706322682193547415773, −0.877910559083362156881609995250, 0.877910559083362156881609995250, 1.76068487706322682193547415773, 2.74416633538060800282655846389, 3.52134866907032351090889184321, 4.46721820413265441084032216974, 5.42902150316550431561249953514, 5.55430506116869532032436401679, 6.60249953464733821536703920981, 7.38921343011771736374587218336, 7.986480265292074962773741402939

Graph of the $Z$-function along the critical line