Properties

Label 2-64800-1.1-c1-0-49
Degree $2$
Conductor $64800$
Sign $-1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 2·11-s − 2·13-s − 5·17-s + 2·19-s − 8·23-s + 10·37-s − 3·41-s + 2·43-s − 9·47-s + 2·49-s − 12·53-s + 6·59-s + 2·61-s + 12·67-s − 12·71-s + 13·73-s + 6·77-s + 79-s − 4·83-s + 7·89-s − 6·91-s − 97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.13·7-s + 0.603·11-s − 0.554·13-s − 1.21·17-s + 0.458·19-s − 1.66·23-s + 1.64·37-s − 0.468·41-s + 0.304·43-s − 1.31·47-s + 2/7·49-s − 1.64·53-s + 0.781·59-s + 0.256·61-s + 1.46·67-s − 1.42·71-s + 1.52·73-s + 0.683·77-s + 0.112·79-s − 0.439·83-s + 0.741·89-s − 0.628·91-s − 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36502634795470, −14.11329234751998, −13.61217882949705, −12.83775903974353, −12.58232759810646, −11.66297987972294, −11.53597568761993, −11.16938117109846, −10.40004809758986, −9.852196146712372, −9.425562072556141, −8.827164718464334, −8.130960403324540, −7.935704487212299, −7.297650724057222, −6.525241719479057, −6.245310246846320, −5.423966617313792, −4.849826700749102, −4.389271738878075, −3.877565520281532, −3.057959473149872, −2.171671464717392, −1.867074289698749, −0.9862950757182533, 0, 0.9862950757182533, 1.867074289698749, 2.171671464717392, 3.057959473149872, 3.877565520281532, 4.389271738878075, 4.849826700749102, 5.423966617313792, 6.245310246846320, 6.525241719479057, 7.297650724057222, 7.935704487212299, 8.130960403324540, 8.827164718464334, 9.425562072556141, 9.852196146712372, 10.40004809758986, 11.16938117109846, 11.53597568761993, 11.66297987972294, 12.58232759810646, 12.83775903974353, 13.61217882949705, 14.11329234751998, 14.36502634795470

Graph of the $Z$-function along the critical line