Properties

Label 2-6210-1.1-c1-0-84
Degree $2$
Conductor $6210$
Sign $-1$
Analytic cond. $49.5870$
Root an. cond. $7.04181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s − 3·11-s − 6·13-s − 2·14-s + 16-s + 2·17-s − 4·19-s + 20-s + 3·22-s + 23-s + 25-s + 6·26-s + 2·28-s + 5·29-s − 2·31-s − 32-s − 2·34-s + 2·35-s + 4·37-s + 4·38-s − 40-s + 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.904·11-s − 1.66·13-s − 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.917·19-s + 0.223·20-s + 0.639·22-s + 0.208·23-s + 1/5·25-s + 1.17·26-s + 0.377·28-s + 0.928·29-s − 0.359·31-s − 0.176·32-s − 0.342·34-s + 0.338·35-s + 0.657·37-s + 0.648·38-s − 0.158·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6210\)    =    \(2 \cdot 3^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(49.5870\)
Root analytic conductor: \(7.04181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81984777863080862778847592570, −7.17204294769881015583293423869, −6.42815323870227743753224611957, −5.47007094528948828935372840364, −4.99168534421134203360298869893, −4.13681845607851271796698534012, −2.69815524124082289339419791166, −2.39422959270519305252559583177, −1.28330233529899526852248479461, 0, 1.28330233529899526852248479461, 2.39422959270519305252559583177, 2.69815524124082289339419791166, 4.13681845607851271796698534012, 4.99168534421134203360298869893, 5.47007094528948828935372840364, 6.42815323870227743753224611957, 7.17204294769881015583293423869, 7.81984777863080862778847592570

Graph of the $Z$-function along the critical line