L(s) = 1 | − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s − 3·11-s − 6·13-s − 2·14-s + 16-s + 2·17-s − 4·19-s + 20-s + 3·22-s + 23-s + 25-s + 6·26-s + 2·28-s + 5·29-s − 2·31-s − 32-s − 2·34-s + 2·35-s + 4·37-s + 4·38-s − 40-s + 10·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.904·11-s − 1.66·13-s − 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.917·19-s + 0.223·20-s + 0.639·22-s + 0.208·23-s + 1/5·25-s + 1.17·26-s + 0.377·28-s + 0.928·29-s − 0.359·31-s − 0.176·32-s − 0.342·34-s + 0.338·35-s + 0.657·37-s + 0.648·38-s − 0.158·40-s + 1.56·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 - T \) | |
| 23 | \( 1 - T \) | |
good | 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac |
| 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d |
| 13 | \( 1 + 6 T + p T^{2} \) | 1.13.g |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 29 | \( 1 - 5 T + p T^{2} \) | 1.29.af |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 - 4 T + p T^{2} \) | 1.37.ae |
| 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak |
| 43 | \( 1 + T + p T^{2} \) | 1.43.b |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 - 9 T + p T^{2} \) | 1.53.aj |
| 59 | \( 1 - 14 T + p T^{2} \) | 1.59.ao |
| 61 | \( 1 - T + p T^{2} \) | 1.61.ab |
| 67 | \( 1 + 12 T + p T^{2} \) | 1.67.m |
| 71 | \( 1 + 13 T + p T^{2} \) | 1.71.n |
| 73 | \( 1 - 16 T + p T^{2} \) | 1.73.aq |
| 79 | \( 1 + 9 T + p T^{2} \) | 1.79.j |
| 83 | \( 1 - 14 T + p T^{2} \) | 1.83.ao |
| 89 | \( 1 + 15 T + p T^{2} \) | 1.89.p |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.81984777863080862778847592570, −7.17204294769881015583293423869, −6.42815323870227743753224611957, −5.47007094528948828935372840364, −4.99168534421134203360298869893, −4.13681845607851271796698534012, −2.69815524124082289339419791166, −2.39422959270519305252559583177, −1.28330233529899526852248479461, 0,
1.28330233529899526852248479461, 2.39422959270519305252559583177, 2.69815524124082289339419791166, 4.13681845607851271796698534012, 4.99168534421134203360298869893, 5.47007094528948828935372840364, 6.42815323870227743753224611957, 7.17204294769881015583293423869, 7.81984777863080862778847592570