Properties

Label 2-6210-1.1-c1-0-56
Degree $2$
Conductor $6210$
Sign $1$
Analytic cond. $49.5870$
Root an. cond. $7.04181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 5·7-s + 8-s − 10-s + 5·13-s + 5·14-s + 16-s − 3·17-s − 7·19-s − 20-s + 23-s + 25-s + 5·26-s + 5·28-s + 6·29-s − 4·31-s + 32-s − 3·34-s − 5·35-s + 8·37-s − 7·38-s − 40-s + 12·41-s + 11·43-s + 46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.88·7-s + 0.353·8-s − 0.316·10-s + 1.38·13-s + 1.33·14-s + 1/4·16-s − 0.727·17-s − 1.60·19-s − 0.223·20-s + 0.208·23-s + 1/5·25-s + 0.980·26-s + 0.944·28-s + 1.11·29-s − 0.718·31-s + 0.176·32-s − 0.514·34-s − 0.845·35-s + 1.31·37-s − 1.13·38-s − 0.158·40-s + 1.87·41-s + 1.67·43-s + 0.147·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6210\)    =    \(2 \cdot 3^{3} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(49.5870\)
Root analytic conductor: \(7.04181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.081266587\)
\(L(\frac12)\) \(\approx\) \(4.081266587\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85049839516216548268277781283, −7.57091909614049087123107923505, −6.35353134432663234639384097910, −6.02429223192644005723950145228, −4.94665357849859923774402461294, −4.35258373244961525418974463429, −4.02523299602352728998638999598, −2.74956946523248293562135130742, −1.91742496956265609693127419530, −1.01792245385563102027986754862, 1.01792245385563102027986754862, 1.91742496956265609693127419530, 2.74956946523248293562135130742, 4.02523299602352728998638999598, 4.35258373244961525418974463429, 4.94665357849859923774402461294, 6.02429223192644005723950145228, 6.35353134432663234639384097910, 7.57091909614049087123107923505, 7.85049839516216548268277781283

Graph of the $Z$-function along the critical line