Properties

Label 2-58-29.20-c3-0-1
Degree $2$
Conductor $58$
Sign $0.584 - 0.811i$
Analytic cond. $3.42211$
Root an. cond. $1.84989$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.80 + 0.867i)2-s + (0.477 + 0.598i)3-s + (2.49 − 3.12i)4-s + (1.70 − 0.820i)5-s + (−1.37 − 0.664i)6-s + (16.1 + 20.2i)7-s + (−1.78 + 7.79i)8-s + (5.87 − 25.7i)9-s + (−2.35 + 2.95i)10-s + (14.8 + 65.2i)11-s + 3.06·12-s + (10.9 + 47.8i)13-s + (−46.6 − 22.4i)14-s + (1.30 + 0.627i)15-s + (−3.56 − 15.5i)16-s + 26.2·17-s + ⋯
L(s)  = 1  + (−0.637 + 0.306i)2-s + (0.0918 + 0.115i)3-s + (0.311 − 0.390i)4-s + (0.152 − 0.0733i)5-s + (−0.0938 − 0.0451i)6-s + (0.871 + 1.09i)7-s + (−0.0786 + 0.344i)8-s + (0.217 − 0.953i)9-s + (−0.0745 + 0.0935i)10-s + (0.408 + 1.78i)11-s + 0.0736·12-s + (0.232 + 1.02i)13-s + (−0.890 − 0.428i)14-s + (0.0224 + 0.0108i)15-s + (−0.0556 − 0.243i)16-s + 0.374·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58\)    =    \(2 \cdot 29\)
Sign: $0.584 - 0.811i$
Analytic conductor: \(3.42211\)
Root analytic conductor: \(1.84989\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{58} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 58,\ (\ :3/2),\ 0.584 - 0.811i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.06985 + 0.548189i\)
\(L(\frac12)\) \(\approx\) \(1.06985 + 0.548189i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.80 - 0.867i)T \)
29 \( 1 + (56.3 + 145. i)T \)
good3 \( 1 + (-0.477 - 0.598i)T + (-6.00 + 26.3i)T^{2} \)
5 \( 1 + (-1.70 + 0.820i)T + (77.9 - 97.7i)T^{2} \)
7 \( 1 + (-16.1 - 20.2i)T + (-76.3 + 334. i)T^{2} \)
11 \( 1 + (-14.8 - 65.2i)T + (-1.19e3 + 577. i)T^{2} \)
13 \( 1 + (-10.9 - 47.8i)T + (-1.97e3 + 953. i)T^{2} \)
17 \( 1 - 26.2T + 4.91e3T^{2} \)
19 \( 1 + (-94.6 + 118. i)T + (-1.52e3 - 6.68e3i)T^{2} \)
23 \( 1 + (171. + 82.6i)T + (7.58e3 + 9.51e3i)T^{2} \)
31 \( 1 + (-134. + 64.6i)T + (1.85e4 - 2.32e4i)T^{2} \)
37 \( 1 + (-1.44 + 6.31i)T + (-4.56e4 - 2.19e4i)T^{2} \)
41 \( 1 + 223.T + 6.89e4T^{2} \)
43 \( 1 + (-238. - 114. i)T + (4.95e4 + 6.21e4i)T^{2} \)
47 \( 1 + (-29.0 - 127. i)T + (-9.35e4 + 4.50e4i)T^{2} \)
53 \( 1 + (122. - 58.8i)T + (9.28e4 - 1.16e5i)T^{2} \)
59 \( 1 + 573.T + 2.05e5T^{2} \)
61 \( 1 + (346. + 434. i)T + (-5.05e4 + 2.21e5i)T^{2} \)
67 \( 1 + (-200. + 876. i)T + (-2.70e5 - 1.30e5i)T^{2} \)
71 \( 1 + (-89.3 - 391. i)T + (-3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (-143. - 69.2i)T + (2.42e5 + 3.04e5i)T^{2} \)
79 \( 1 + (-90.9 + 398. i)T + (-4.44e5 - 2.13e5i)T^{2} \)
83 \( 1 + (-492. + 616. i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (-716. + 344. i)T + (4.39e5 - 5.51e5i)T^{2} \)
97 \( 1 + (-168. + 211. i)T + (-2.03e5 - 8.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13051009431166345180776682923, −14.07593521524945760584611461662, −12.19944502518691588665713153422, −11.59479009404384384012195662774, −9.683241781063548438724480171258, −9.177504985629929834617511802599, −7.66040473919939773246296760764, −6.31051562602917322033119572634, −4.62912417255800135355038093261, −1.92288449272385199894484726167, 1.26277308289461992248708926545, 3.59051816329173504476227706665, 5.71086621807635432729985630277, 7.71231750645364022188515326366, 8.233933242474738289828513832770, 10.12635661568367234123415309861, 10.82447549298918222812379248110, 11.95826370706700703619761853074, 13.73002762668694075036283073303, 14.04270613038203749433398632841

Graph of the $Z$-function along the critical line