Properties

Label 2-572e2-1.1-c1-0-112
Degree $2$
Conductor $327184$
Sign $1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 2·7-s − 2·9-s + 2·15-s − 7·17-s + 2·19-s − 2·21-s + 3·23-s − 25-s + 5·27-s − 9·29-s − 6·31-s − 4·35-s − 6·37-s − 6·41-s − 5·43-s + 4·45-s + 6·47-s − 3·49-s + 7·51-s + 11·53-s − 2·57-s − 8·59-s + 5·61-s − 4·63-s − 14·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.755·7-s − 2/3·9-s + 0.516·15-s − 1.69·17-s + 0.458·19-s − 0.436·21-s + 0.625·23-s − 1/5·25-s + 0.962·27-s − 1.67·29-s − 1.07·31-s − 0.676·35-s − 0.986·37-s − 0.937·41-s − 0.762·43-s + 0.596·45-s + 0.875·47-s − 3/7·49-s + 0.980·51-s + 1.51·53-s − 0.264·57-s − 1.04·59-s + 0.640·61-s − 0.503·63-s − 1.71·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16027358203272, −12.38555765846874, −12.02763477445040, −11.63122267376566, −11.27919967999547, −10.90312094517158, −10.64785013930415, −9.961590550522317, −9.212247479157045, −8.825724555985512, −8.631160189053024, −7.945895131500311, −7.448768767192844, −7.135856330554196, −6.614463330135140, −5.937341742089430, −5.560723985601628, −4.947225885047507, −4.702112726420663, −4.012536902936642, −3.524398326950824, −3.063562384296294, −2.112156301114202, −1.883206845536653, −0.9734362177510992, 0, 0, 0.9734362177510992, 1.883206845536653, 2.112156301114202, 3.063562384296294, 3.524398326950824, 4.012536902936642, 4.702112726420663, 4.947225885047507, 5.560723985601628, 5.937341742089430, 6.614463330135140, 7.135856330554196, 7.448768767192844, 7.945895131500311, 8.631160189053024, 8.825724555985512, 9.212247479157045, 9.961590550522317, 10.64785013930415, 10.90312094517158, 11.27919967999547, 11.63122267376566, 12.02763477445040, 12.38555765846874, 13.16027358203272

Graph of the $Z$-function along the critical line