Properties

Label 2-572e2-1.1-c1-0-104
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 3·7-s + 9-s + 2·15-s + 6·17-s − 6·21-s − 23-s − 4·25-s + 4·27-s + 3·29-s + 10·31-s − 3·35-s − 2·37-s + 7·41-s − 43-s − 45-s − 4·47-s + 2·49-s − 12·51-s + 6·53-s − 5·59-s + 11·61-s + 3·63-s − 67-s + 2·69-s + 16·71-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s + 0.516·15-s + 1.45·17-s − 1.30·21-s − 0.208·23-s − 4/5·25-s + 0.769·27-s + 0.557·29-s + 1.79·31-s − 0.507·35-s − 0.328·37-s + 1.09·41-s − 0.152·43-s − 0.149·45-s − 0.583·47-s + 2/7·49-s − 1.68·51-s + 0.824·53-s − 0.650·59-s + 1.40·61-s + 0.377·63-s − 0.122·67-s + 0.240·69-s + 1.89·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56675615888937, −12.13317759536728, −11.94252214785768, −11.49077177484391, −11.19387761628992, −10.58964540125998, −10.30072960803895, −9.734604234337026, −9.330227329498338, −8.376680414761283, −8.174382694378943, −7.959443196176491, −7.195434852219513, −6.801424621813864, −6.187351026118108, −5.726448674251658, −5.327695419169873, −4.895828860646336, −4.357639704720495, −3.953619328644403, −3.197040529224166, −2.646234923904665, −1.922468407648957, −1.125369086681763, −0.8706000642604717, 0, 0.8706000642604717, 1.125369086681763, 1.922468407648957, 2.646234923904665, 3.197040529224166, 3.953619328644403, 4.357639704720495, 4.895828860646336, 5.327695419169873, 5.726448674251658, 6.187351026118108, 6.801424621813864, 7.195434852219513, 7.959443196176491, 8.174382694378943, 8.376680414761283, 9.330227329498338, 9.734604234337026, 10.30072960803895, 10.58964540125998, 11.19387761628992, 11.49077177484391, 11.94252214785768, 12.13317759536728, 12.56675615888937

Graph of the $Z$-function along the critical line