Properties

Label 2-552e2-1.1-c1-0-114
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 4·11-s − 2·13-s − 2·19-s − 5·25-s + 6·29-s − 6·37-s + 6·41-s − 10·43-s − 3·49-s − 4·53-s − 4·59-s − 6·61-s + 2·67-s + 8·71-s + 2·73-s + 8·77-s − 2·79-s + 12·83-s − 4·89-s − 4·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.755·7-s + 1.20·11-s − 0.554·13-s − 0.458·19-s − 25-s + 1.11·29-s − 0.986·37-s + 0.937·41-s − 1.52·43-s − 3/7·49-s − 0.549·53-s − 0.520·59-s − 0.768·61-s + 0.244·67-s + 0.949·71-s + 0.234·73-s + 0.911·77-s − 0.225·79-s + 1.31·83-s − 0.423·89-s − 0.419·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78376075944762, −12.28917934050585, −12.06449562034048, −11.48165617132129, −11.21929332418555, −10.65703833157432, −10.06615623557261, −9.774915093595969, −9.187493300100352, −8.738984772525482, −8.320803161035476, −7.796096592791929, −7.397683246912410, −6.757654739344642, −6.346027541404667, −5.985516046687651, −5.163505855321093, −4.814766019561464, −4.393713551477749, −3.726562298953374, −3.351004748665654, −2.563322547083826, −1.925879001046141, −1.556010565473276, −0.8297726632970706, 0, 0.8297726632970706, 1.556010565473276, 1.925879001046141, 2.563322547083826, 3.351004748665654, 3.726562298953374, 4.393713551477749, 4.814766019561464, 5.163505855321093, 5.985516046687651, 6.346027541404667, 6.757654739344642, 7.397683246912410, 7.796096592791929, 8.320803161035476, 8.738984772525482, 9.187493300100352, 9.774915093595969, 10.06615623557261, 10.65703833157432, 11.21929332418555, 11.48165617132129, 12.06449562034048, 12.28917934050585, 12.78376075944762

Graph of the $Z$-function along the critical line