Properties

Label 2-552e2-1.1-c1-0-101
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s + 4·11-s − 4·13-s + 7·17-s − 3·19-s − 25-s − 4·29-s + 6·31-s − 4·35-s − 2·37-s − 6·41-s − 5·43-s + 10·47-s − 3·49-s − 8·55-s − 5·59-s + 4·61-s + 8·65-s − 5·67-s − 14·71-s + 15·73-s + 8·77-s − 12·79-s − 15·83-s − 14·85-s + 10·89-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s + 1.20·11-s − 1.10·13-s + 1.69·17-s − 0.688·19-s − 1/5·25-s − 0.742·29-s + 1.07·31-s − 0.676·35-s − 0.328·37-s − 0.937·41-s − 0.762·43-s + 1.45·47-s − 3/7·49-s − 1.07·55-s − 0.650·59-s + 0.512·61-s + 0.992·65-s − 0.610·67-s − 1.66·71-s + 1.75·73-s + 0.911·77-s − 1.35·79-s − 1.64·83-s − 1.51·85-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 3 T + p T^{2} \) 1.19.d
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60479765474089, −12.41246278586411, −11.83378794863737, −11.63938686626057, −11.37105354477130, −10.47463695356465, −10.24549264362225, −9.744711228759090, −9.188310200964534, −8.691829998531518, −8.221902305391703, −7.770311812235763, −7.413516458613458, −6.978992064349427, −6.358260458581650, −5.825594129474283, −5.256235632100351, −4.752392281166120, −4.282800985848664, −3.814324536308554, −3.307079402093842, −2.733487960272792, −1.902815548156939, −1.478084866248156, −0.7650726055067931, 0, 0.7650726055067931, 1.478084866248156, 1.902815548156939, 2.733487960272792, 3.307079402093842, 3.814324536308554, 4.282800985848664, 4.752392281166120, 5.256235632100351, 5.825594129474283, 6.358260458581650, 6.978992064349427, 7.413516458613458, 7.770311812235763, 8.221902305391703, 8.691829998531518, 9.188310200964534, 9.744711228759090, 10.24549264362225, 10.47463695356465, 11.37105354477130, 11.63938686626057, 11.83378794863737, 12.41246278586411, 12.60479765474089

Graph of the $Z$-function along the critical line