Properties

Label 2-5100-1.1-c1-0-31
Degree $2$
Conductor $5100$
Sign $-1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 5·11-s + 4·13-s − 17-s + 19-s + 21-s − 27-s + 9·29-s − 6·31-s + 5·33-s − 3·37-s − 4·39-s + 5·41-s + 2·43-s + 9·47-s − 6·49-s + 51-s + 3·53-s − 57-s − 6·59-s − 63-s − 14·67-s − 8·71-s + 7·73-s + 5·77-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.50·11-s + 1.10·13-s − 0.242·17-s + 0.229·19-s + 0.218·21-s − 0.192·27-s + 1.67·29-s − 1.07·31-s + 0.870·33-s − 0.493·37-s − 0.640·39-s + 0.780·41-s + 0.304·43-s + 1.31·47-s − 6/7·49-s + 0.140·51-s + 0.412·53-s − 0.132·57-s − 0.781·59-s − 0.125·63-s − 1.71·67-s − 0.949·71-s + 0.819·73-s + 0.569·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80101498110629500414153987633, −7.15588662798600336752522189959, −6.29109778398469615881288493724, −5.74828815182154504555401334420, −5.02477989924825182865279003143, −4.22341223003544440578010036634, −3.26178520883866927668882298201, −2.45451092876252325005184007965, −1.20375695326824358810449285152, 0, 1.20375695326824358810449285152, 2.45451092876252325005184007965, 3.26178520883866927668882298201, 4.22341223003544440578010036634, 5.02477989924825182865279003143, 5.74828815182154504555401334420, 6.29109778398469615881288493724, 7.15588662798600336752522189959, 7.80101498110629500414153987633

Graph of the $Z$-function along the critical line