Properties

Label 2-47775-1.1-c1-0-26
Degree $2$
Conductor $47775$
Sign $1$
Analytic cond. $381.485$
Root an. cond. $19.5316$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 9-s + 11-s − 2·12-s − 13-s + 4·16-s + 6·17-s − 2·19-s − 8·23-s + 27-s + 8·29-s − 4·31-s + 33-s − 2·36-s + 7·37-s − 39-s + 10·41-s − 4·43-s − 2·44-s + 4·48-s + 6·51-s + 2·52-s + 11·53-s − 2·57-s + 59-s − 7·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1/3·9-s + 0.301·11-s − 0.577·12-s − 0.277·13-s + 16-s + 1.45·17-s − 0.458·19-s − 1.66·23-s + 0.192·27-s + 1.48·29-s − 0.718·31-s + 0.174·33-s − 1/3·36-s + 1.15·37-s − 0.160·39-s + 1.56·41-s − 0.609·43-s − 0.301·44-s + 0.577·48-s + 0.840·51-s + 0.277·52-s + 1.51·53-s − 0.264·57-s + 0.130·59-s − 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47775\)    =    \(3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(381.485\)
Root analytic conductor: \(19.5316\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47775,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.289916459\)
\(L(\frac12)\) \(\approx\) \(2.289916459\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55508251634649, −14.04104391901549, −13.74833291837689, −13.00797688656734, −12.65045174704773, −12.01091943718415, −11.78084946163833, −10.73661009662388, −10.18420062883060, −9.931253359346835, −9.300808099204987, −8.851516295225703, −8.233123915078437, −7.802368346941735, −7.412617509314787, −6.463847037693252, −5.886479398018845, −5.421096450719286, −4.505073677951132, −4.245143596510670, −3.559426939131625, −2.951237589288356, −2.174547418308837, −1.293092083118210, −0.5686071965052772, 0.5686071965052772, 1.293092083118210, 2.174547418308837, 2.951237589288356, 3.559426939131625, 4.245143596510670, 4.505073677951132, 5.421096450719286, 5.886479398018845, 6.463847037693252, 7.412617509314787, 7.802368346941735, 8.233123915078437, 8.851516295225703, 9.300808099204987, 9.931253359346835, 10.18420062883060, 10.73661009662388, 11.78084946163833, 12.01091943718415, 12.65045174704773, 13.00797688656734, 13.74833291837689, 14.04104391901549, 14.55508251634649

Graph of the $Z$-function along the critical line