Properties

Label 2-40e2-1.1-c3-0-38
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 34·7-s + 9·9-s − 16·11-s + 58·13-s + 70·17-s − 4·19-s − 204·21-s + 134·23-s + 108·27-s + 242·29-s + 100·31-s + 96·33-s − 438·37-s − 348·39-s − 138·41-s + 178·43-s − 22·47-s + 813·49-s − 420·51-s + 162·53-s + 24·57-s + 268·59-s − 250·61-s + 306·63-s + 422·67-s − 804·69-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.83·7-s + 1/3·9-s − 0.438·11-s + 1.23·13-s + 0.998·17-s − 0.0482·19-s − 2.11·21-s + 1.21·23-s + 0.769·27-s + 1.54·29-s + 0.579·31-s + 0.506·33-s − 1.94·37-s − 1.42·39-s − 0.525·41-s + 0.631·43-s − 0.0682·47-s + 2.37·49-s − 1.15·51-s + 0.419·53-s + 0.0557·57-s + 0.591·59-s − 0.524·61-s + 0.611·63-s + 0.769·67-s − 1.40·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.084550004\)
\(L(\frac12)\) \(\approx\) \(2.084550004\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2 p T + p^{3} T^{2} \)
7 \( 1 - 34 T + p^{3} T^{2} \)
11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 - 70 T + p^{3} T^{2} \)
19 \( 1 + 4 T + p^{3} T^{2} \)
23 \( 1 - 134 T + p^{3} T^{2} \)
29 \( 1 - 242 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 + 438 T + p^{3} T^{2} \)
41 \( 1 + 138 T + p^{3} T^{2} \)
43 \( 1 - 178 T + p^{3} T^{2} \)
47 \( 1 + 22 T + p^{3} T^{2} \)
53 \( 1 - 162 T + p^{3} T^{2} \)
59 \( 1 - 268 T + p^{3} T^{2} \)
61 \( 1 + 250 T + p^{3} T^{2} \)
67 \( 1 - 422 T + p^{3} T^{2} \)
71 \( 1 + 12 p T + p^{3} T^{2} \)
73 \( 1 + 306 T + p^{3} T^{2} \)
79 \( 1 + 456 T + p^{3} T^{2} \)
83 \( 1 - 434 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 + 1378 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.690163654245099286764808661693, −8.399117273267493782312454707317, −7.41818917122993891086839916674, −6.52659294551341748668611873978, −5.52351539008010257119369022222, −5.14018053822269905930552559320, −4.31080484274574571620360403811, −2.99015514151024163551326218356, −1.51415405041624097172172590820, −0.831753376812375317009992180702, 0.831753376812375317009992180702, 1.51415405041624097172172590820, 2.99015514151024163551326218356, 4.31080484274574571620360403811, 5.14018053822269905930552559320, 5.52351539008010257119369022222, 6.52659294551341748668611873978, 7.41818917122993891086839916674, 8.399117273267493782312454707317, 8.690163654245099286764808661693

Graph of the $Z$-function along the critical line