L(s) = 1 | − 6·3-s + 34·7-s + 9·9-s − 16·11-s + 58·13-s + 70·17-s − 4·19-s − 204·21-s + 134·23-s + 108·27-s + 242·29-s + 100·31-s + 96·33-s − 438·37-s − 348·39-s − 138·41-s + 178·43-s − 22·47-s + 813·49-s − 420·51-s + 162·53-s + 24·57-s + 268·59-s − 250·61-s + 306·63-s + 422·67-s − 804·69-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.83·7-s + 1/3·9-s − 0.438·11-s + 1.23·13-s + 0.998·17-s − 0.0482·19-s − 2.11·21-s + 1.21·23-s + 0.769·27-s + 1.54·29-s + 0.579·31-s + 0.506·33-s − 1.94·37-s − 1.42·39-s − 0.525·41-s + 0.631·43-s − 0.0682·47-s + 2.37·49-s − 1.15·51-s + 0.419·53-s + 0.0557·57-s + 0.591·59-s − 0.524·61-s + 0.611·63-s + 0.769·67-s − 1.40·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.084550004 |
L(21) |
≈ |
2.084550004 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2pT+p3T2 |
| 7 | 1−34T+p3T2 |
| 11 | 1+16T+p3T2 |
| 13 | 1−58T+p3T2 |
| 17 | 1−70T+p3T2 |
| 19 | 1+4T+p3T2 |
| 23 | 1−134T+p3T2 |
| 29 | 1−242T+p3T2 |
| 31 | 1−100T+p3T2 |
| 37 | 1+438T+p3T2 |
| 41 | 1+138T+p3T2 |
| 43 | 1−178T+p3T2 |
| 47 | 1+22T+p3T2 |
| 53 | 1−162T+p3T2 |
| 59 | 1−268T+p3T2 |
| 61 | 1+250T+p3T2 |
| 67 | 1−422T+p3T2 |
| 71 | 1+12pT+p3T2 |
| 73 | 1+306T+p3T2 |
| 79 | 1+456T+p3T2 |
| 83 | 1−434T+p3T2 |
| 89 | 1+726T+p3T2 |
| 97 | 1+1378T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.690163654245099286764808661693, −8.399117273267493782312454707317, −7.41818917122993891086839916674, −6.52659294551341748668611873978, −5.52351539008010257119369022222, −5.14018053822269905930552559320, −4.31080484274574571620360403811, −2.99015514151024163551326218356, −1.51415405041624097172172590820, −0.831753376812375317009992180702,
0.831753376812375317009992180702, 1.51415405041624097172172590820, 2.99015514151024163551326218356, 4.31080484274574571620360403811, 5.14018053822269905930552559320, 5.52351539008010257119369022222, 6.52659294551341748668611873978, 7.41818917122993891086839916674, 8.399117273267493782312454707317, 8.690163654245099286764808661693