Properties

Label 2-40656-1.1-c1-0-48
Degree $2$
Conductor $40656$
Sign $-1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 4·13-s + 15-s + 5·17-s − 6·19-s + 21-s − 4·25-s − 27-s − 10·29-s + 2·31-s + 35-s − 2·37-s + 4·39-s − 2·41-s + 13·43-s − 45-s − 47-s + 49-s − 5·51-s + 4·53-s + 6·57-s + 3·59-s + 8·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.10·13-s + 0.258·15-s + 1.21·17-s − 1.37·19-s + 0.218·21-s − 4/5·25-s − 0.192·27-s − 1.85·29-s + 0.359·31-s + 0.169·35-s − 0.328·37-s + 0.640·39-s − 0.312·41-s + 1.98·43-s − 0.149·45-s − 0.145·47-s + 1/7·49-s − 0.700·51-s + 0.549·53-s + 0.794·57-s + 0.390·59-s + 1.02·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.06934870034301, −14.55546031019208, −14.12196058950221, −13.29951081611920, −12.79316552236926, −12.45969362122783, −11.90439918823390, −11.46293745656863, −10.84505368853832, −10.30799189823661, −9.807215473019103, −9.355043070480404, −8.640769618692807, −7.955149502830108, −7.431805370977795, −7.076174136657233, −6.283259868040659, −5.712423378016332, −5.301399568927114, −4.462671109663828, −3.967424941291893, −3.377536074154924, −2.440193718292206, −1.869809910953147, −0.7413004324795949, 0, 0.7413004324795949, 1.869809910953147, 2.440193718292206, 3.377536074154924, 3.967424941291893, 4.462671109663828, 5.301399568927114, 5.712423378016332, 6.283259868040659, 7.076174136657233, 7.431805370977795, 7.955149502830108, 8.640769618692807, 9.355043070480404, 9.807215473019103, 10.30799189823661, 10.84505368853832, 11.46293745656863, 11.90439918823390, 12.45969362122783, 12.79316552236926, 13.29951081611920, 14.12196058950221, 14.55546031019208, 15.06934870034301

Graph of the $Z$-function along the critical line