Properties

Label 2-40656-1.1-c1-0-16
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 3·13-s − 15-s + 7·19-s + 21-s − 6·23-s − 4·25-s − 27-s + 9·29-s − 35-s − 3·37-s + 3·39-s − 8·41-s + 10·43-s + 45-s − 3·47-s + 49-s + 6·53-s − 7·57-s − 7·59-s − 10·61-s − 63-s − 3·65-s + 3·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.832·13-s − 0.258·15-s + 1.60·19-s + 0.218·21-s − 1.25·23-s − 4/5·25-s − 0.192·27-s + 1.67·29-s − 0.169·35-s − 0.493·37-s + 0.480·39-s − 1.24·41-s + 1.52·43-s + 0.149·45-s − 0.437·47-s + 1/7·49-s + 0.824·53-s − 0.927·57-s − 0.911·59-s − 1.28·61-s − 0.125·63-s − 0.372·65-s + 0.366·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.447276014\)
\(L(\frac12)\) \(\approx\) \(1.447276014\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74990725316344, −13.94730311002712, −13.86952388205903, −13.35612649216144, −12.37684636137526, −12.19573967723826, −11.85948595200452, −11.10508802396386, −10.41887643701823, −10.09642799546675, −9.456037397365464, −9.290404874480213, −8.096414924750199, −7.954335524057939, −7.014670032685497, −6.741581082529726, −5.921512173515063, −5.570601152356305, −4.936745659829454, −4.328322031792479, −3.562012068477923, −2.867590374444973, −2.157259922853032, −1.356601321826505, −0.4672261862835762, 0.4672261862835762, 1.356601321826505, 2.157259922853032, 2.867590374444973, 3.562012068477923, 4.328322031792479, 4.936745659829454, 5.570601152356305, 5.921512173515063, 6.741581082529726, 7.014670032685497, 7.954335524057939, 8.096414924750199, 9.290404874480213, 9.456037397365464, 10.09642799546675, 10.41887643701823, 11.10508802396386, 11.85948595200452, 12.19573967723826, 12.37684636137526, 13.35612649216144, 13.86952388205903, 13.94730311002712, 14.74990725316344

Graph of the $Z$-function along the critical line