Properties

Label 2-40656-1.1-c1-0-10
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 6·13-s − 15-s + 3·17-s + 4·19-s + 21-s − 6·23-s − 4·25-s − 27-s + 6·31-s − 35-s − 6·37-s + 6·39-s + 10·41-s − 11·43-s + 45-s + 9·47-s + 49-s − 3·51-s − 12·53-s − 4·57-s − 7·59-s + 2·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.66·13-s − 0.258·15-s + 0.727·17-s + 0.917·19-s + 0.218·21-s − 1.25·23-s − 4/5·25-s − 0.192·27-s + 1.07·31-s − 0.169·35-s − 0.986·37-s + 0.960·39-s + 1.56·41-s − 1.67·43-s + 0.149·45-s + 1.31·47-s + 1/7·49-s − 0.420·51-s − 1.64·53-s − 0.529·57-s − 0.911·59-s + 0.256·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.076033114\)
\(L(\frac12)\) \(\approx\) \(1.076033114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60223316854859, −14.22668209015570, −13.81394571150132, −13.19505072031631, −12.51657798987784, −12.11415381546625, −11.84421467989534, −11.18877160030653, −10.23197884355457, −10.16921353826587, −9.586120650586588, −9.217248039795524, −8.234456511247677, −7.619753365577593, −7.377178190651642, −6.446175550565381, −6.158948807231636, −5.345186598630952, −5.076418182621852, −4.296351151000952, −3.591091909775096, −2.818036861816253, −2.180260930212278, −1.390686415320193, −0.3931215081634168, 0.3931215081634168, 1.390686415320193, 2.180260930212278, 2.818036861816253, 3.591091909775096, 4.296351151000952, 5.076418182621852, 5.345186598630952, 6.158948807231636, 6.446175550565381, 7.377178190651642, 7.619753365577593, 8.234456511247677, 9.217248039795524, 9.586120650586588, 10.16921353826587, 10.23197884355457, 11.18877160030653, 11.84421467989534, 12.11415381546625, 12.51657798987784, 13.19505072031631, 13.81394571150132, 14.22668209015570, 14.60223316854859

Graph of the $Z$-function along the critical line