Properties

Label 2-40560-1.1-c1-0-49
Degree $2$
Conductor $40560$
Sign $-1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·7-s + 9-s − 11-s + 15-s + 6·17-s + 6·19-s + 2·21-s + 5·23-s + 25-s − 27-s + 3·29-s + 7·31-s + 33-s + 2·35-s − 11·37-s − 10·41-s + 43-s − 45-s − 13·47-s − 3·49-s − 6·51-s + 10·53-s + 55-s − 6·57-s − 3·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.258·15-s + 1.45·17-s + 1.37·19-s + 0.436·21-s + 1.04·23-s + 1/5·25-s − 0.192·27-s + 0.557·29-s + 1.25·31-s + 0.174·33-s + 0.338·35-s − 1.80·37-s − 1.56·41-s + 0.152·43-s − 0.149·45-s − 1.89·47-s − 3/7·49-s − 0.840·51-s + 1.37·53-s + 0.134·55-s − 0.794·57-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.23218000895818, −14.49304940090348, −13.94918920607617, −13.38911964577905, −12.97126106524780, −12.17367793893308, −12.01787304387595, −11.54814859777594, −10.81117748401943, −10.19222323030999, −9.919325773372750, −9.384534148090440, −8.511216767893115, −8.136940303861580, −7.405125629149773, −6.863471372490421, −6.535964913073721, −5.575577102576819, −5.249997080466575, −4.726175912778184, −3.752415381060191, −3.215647567370645, −2.849345246171071, −1.540458392401501, −0.9227578157397158, 0, 0.9227578157397158, 1.540458392401501, 2.849345246171071, 3.215647567370645, 3.752415381060191, 4.726175912778184, 5.249997080466575, 5.575577102576819, 6.535964913073721, 6.863471372490421, 7.405125629149773, 8.136940303861580, 8.511216767893115, 9.384534148090440, 9.919325773372750, 10.19222323030999, 10.81117748401943, 11.54814859777594, 12.01787304387595, 12.17367793893308, 12.97126106524780, 13.38911964577905, 13.94918920607617, 14.49304940090348, 15.23218000895818

Graph of the $Z$-function along the critical line