L(s) = 1 | + 3-s − 7-s + 9-s − 3·11-s + 13-s − 7·17-s − 4·19-s − 21-s + 9·23-s + 27-s + 8·29-s + 4·31-s − 3·33-s − 3·37-s + 39-s − 5·41-s + 2·47-s − 6·49-s − 7·51-s − 3·53-s − 4·57-s − 12·59-s − 15·61-s − 63-s − 12·67-s + 9·69-s − 15·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.277·13-s − 1.69·17-s − 0.917·19-s − 0.218·21-s + 1.87·23-s + 0.192·27-s + 1.48·29-s + 0.718·31-s − 0.522·33-s − 0.493·37-s + 0.160·39-s − 0.780·41-s + 0.291·47-s − 6/7·49-s − 0.980·51-s − 0.412·53-s − 0.529·57-s − 1.56·59-s − 1.92·61-s − 0.125·63-s − 1.46·67-s + 1.08·69-s − 1.78·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 \) | |
| 13 | \( 1 - T \) | |
good | 7 | \( 1 + T + p T^{2} \) | 1.7.b |
| 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d |
| 17 | \( 1 + 7 T + p T^{2} \) | 1.17.h |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 23 | \( 1 - 9 T + p T^{2} \) | 1.23.aj |
| 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai |
| 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae |
| 37 | \( 1 + 3 T + p T^{2} \) | 1.37.d |
| 41 | \( 1 + 5 T + p T^{2} \) | 1.41.f |
| 43 | \( 1 + p T^{2} \) | 1.43.a |
| 47 | \( 1 - 2 T + p T^{2} \) | 1.47.ac |
| 53 | \( 1 + 3 T + p T^{2} \) | 1.53.d |
| 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m |
| 61 | \( 1 + 15 T + p T^{2} \) | 1.61.p |
| 67 | \( 1 + 12 T + p T^{2} \) | 1.67.m |
| 71 | \( 1 + 15 T + p T^{2} \) | 1.71.p |
| 73 | \( 1 - 2 T + p T^{2} \) | 1.73.ac |
| 79 | \( 1 + 5 T + p T^{2} \) | 1.79.f |
| 83 | \( 1 + 10 T + p T^{2} \) | 1.83.k |
| 89 | \( 1 - 5 T + p T^{2} \) | 1.89.af |
| 97 | \( 1 + 13 T + p T^{2} \) | 1.97.n |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.298389610142194102906673247299, −7.34578884725804829233654879182, −6.67925582151963801960228118238, −6.06782772314961687237023497617, −4.75882832592457632114248925224, −4.50329441321280524467127055167, −3.12385984107470788563852116756, −2.71551932657136698790975751755, −1.55388509548711971117490835868, 0,
1.55388509548711971117490835868, 2.71551932657136698790975751755, 3.12385984107470788563852116756, 4.50329441321280524467127055167, 4.75882832592457632114248925224, 6.06782772314961687237023497617, 6.67925582151963801960228118238, 7.34578884725804829233654879182, 8.298389610142194102906673247299