Properties

Label 2-3900-1.1-c1-0-32
Degree $2$
Conductor $3900$
Sign $-1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 3·11-s + 13-s − 7·17-s − 4·19-s − 21-s + 9·23-s + 27-s + 8·29-s + 4·31-s − 3·33-s − 3·37-s + 39-s − 5·41-s + 2·47-s − 6·49-s − 7·51-s − 3·53-s − 4·57-s − 12·59-s − 15·61-s − 63-s − 12·67-s + 9·69-s − 15·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.277·13-s − 1.69·17-s − 0.917·19-s − 0.218·21-s + 1.87·23-s + 0.192·27-s + 1.48·29-s + 0.718·31-s − 0.522·33-s − 0.493·37-s + 0.160·39-s − 0.780·41-s + 0.291·47-s − 6/7·49-s − 0.980·51-s − 0.412·53-s − 0.529·57-s − 1.56·59-s − 1.92·61-s − 0.125·63-s − 1.46·67-s + 1.08·69-s − 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.298389610142194102906673247299, −7.34578884725804829233654879182, −6.67925582151963801960228118238, −6.06782772314961687237023497617, −4.75882832592457632114248925224, −4.50329441321280524467127055167, −3.12385984107470788563852116756, −2.71551932657136698790975751755, −1.55388509548711971117490835868, 0, 1.55388509548711971117490835868, 2.71551932657136698790975751755, 3.12385984107470788563852116756, 4.50329441321280524467127055167, 4.75882832592457632114248925224, 6.06782772314961687237023497617, 6.67925582151963801960228118238, 7.34578884725804829233654879182, 8.298389610142194102906673247299

Graph of the $Z$-function along the critical line