Properties

Label 2-3872-1.1-c1-0-54
Degree $2$
Conductor $3872$
Sign $1$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 2·7-s + 9-s + 13-s + 2·15-s + 3·17-s + 2·19-s + 4·21-s − 6·23-s − 4·25-s − 4·27-s + 29-s + 10·31-s + 2·35-s − 3·37-s + 2·39-s + 11·41-s + 12·43-s + 45-s + 10·47-s − 3·49-s + 6·51-s + 9·53-s + 4·57-s − 4·59-s + 6·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.277·13-s + 0.516·15-s + 0.727·17-s + 0.458·19-s + 0.872·21-s − 1.25·23-s − 4/5·25-s − 0.769·27-s + 0.185·29-s + 1.79·31-s + 0.338·35-s − 0.493·37-s + 0.320·39-s + 1.71·41-s + 1.82·43-s + 0.149·45-s + 1.45·47-s − 3/7·49-s + 0.840·51-s + 1.23·53-s + 0.529·57-s − 0.520·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.604666410\)
\(L(\frac12)\) \(\approx\) \(3.604666410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.535240266317922487385019685679, −7.71990293041314627611970698480, −7.45745214242486139816618070133, −6.03071280739939111680869189764, −5.70313108829488008977187510841, −4.48091665258988671468461695129, −3.84427585872851509526933245739, −2.79565924032788372310580670424, −2.17482249812905007594416584983, −1.11200571704776262206779926037, 1.11200571704776262206779926037, 2.17482249812905007594416584983, 2.79565924032788372310580670424, 3.84427585872851509526933245739, 4.48091665258988671468461695129, 5.70313108829488008977187510841, 6.03071280739939111680869189764, 7.45745214242486139816618070133, 7.71990293041314627611970698480, 8.535240266317922487385019685679

Graph of the $Z$-function along the critical line