Properties

Label 2-382800-1.1-c1-0-1
Degree $2$
Conductor $382800$
Sign $1$
Analytic cond. $3056.67$
Root an. cond. $55.2871$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s + 11-s − 4·13-s − 5·17-s + 7·19-s − 3·21-s − 9·23-s + 27-s − 29-s + 2·31-s + 33-s + 5·37-s − 4·39-s − 9·41-s + 4·43-s − 7·47-s + 2·49-s − 5·51-s + 7·57-s + 3·59-s + 8·61-s − 3·63-s + 4·67-s − 9·69-s − 3·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s − 1.21·17-s + 1.60·19-s − 0.654·21-s − 1.87·23-s + 0.192·27-s − 0.185·29-s + 0.359·31-s + 0.174·33-s + 0.821·37-s − 0.640·39-s − 1.40·41-s + 0.609·43-s − 1.02·47-s + 2/7·49-s − 0.700·51-s + 0.927·57-s + 0.390·59-s + 1.02·61-s − 0.377·63-s + 0.488·67-s − 1.08·69-s − 0.356·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $1$
Analytic conductor: \(3056.67\)
Root analytic conductor: \(55.2871\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 382800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6604962594\)
\(L(\frac12)\) \(\approx\) \(0.6604962594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
29 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 9 T + p T^{2} \) 1.23.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66677644913461, −11.88063634834494, −11.71741771961596, −11.30332328552359, −10.39305356382410, −10.04557653059485, −9.814755611022082, −9.350246286099145, −8.963239090114015, −8.399924515868141, −7.789794190857590, −7.547676528470712, −6.922076156047523, −6.477964641504654, −6.190099449596591, −5.420832738664111, −4.983925340174768, −4.409270955103871, −3.739775526537050, −3.565558720072277, −2.719402686301974, −2.493445807075289, −1.839812530508521, −1.116767610891206, −0.2028141590042152, 0.2028141590042152, 1.116767610891206, 1.839812530508521, 2.493445807075289, 2.719402686301974, 3.565558720072277, 3.739775526537050, 4.409270955103871, 4.983925340174768, 5.420832738664111, 6.190099449596591, 6.477964641504654, 6.922076156047523, 7.547676528470712, 7.789794190857590, 8.399924515868141, 8.963239090114015, 9.350246286099145, 9.814755611022082, 10.04557653059485, 10.39305356382410, 11.30332328552359, 11.71741771961596, 11.88063634834494, 12.66677644913461

Graph of the $Z$-function along the critical line