Properties

Label 2-381480-1.1-c1-0-39
Degree $2$
Conductor $381480$
Sign $-1$
Analytic cond. $3046.13$
Root an. cond. $55.1917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s − 11-s − 2·13-s − 15-s + 6·19-s + 2·21-s − 6·23-s + 25-s − 27-s − 2·31-s + 33-s − 2·35-s + 6·37-s + 2·39-s + 5·41-s + 5·43-s + 45-s − 4·47-s − 3·49-s − 12·53-s − 55-s − 6·57-s + 8·59-s + 7·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 0.258·15-s + 1.37·19-s + 0.436·21-s − 1.25·23-s + 1/5·25-s − 0.192·27-s − 0.359·31-s + 0.174·33-s − 0.338·35-s + 0.986·37-s + 0.320·39-s + 0.780·41-s + 0.762·43-s + 0.149·45-s − 0.583·47-s − 3/7·49-s − 1.64·53-s − 0.134·55-s − 0.794·57-s + 1.04·59-s + 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381480\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(3046.13\)
Root analytic conductor: \(55.1917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 381480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70713491433103, −12.38002957010339, −11.69870751324071, −11.39523204795269, −10.99890050870854, −10.27910247213492, −9.968212356742992, −9.612803650501292, −9.348593799578168, −8.662328079230063, −7.930433966048604, −7.748607088053667, −7.056843766749627, −6.759177086528685, −6.069218441995290, −5.775033473260837, −5.421180402598767, −4.686739827813867, −4.400124566604819, −3.587789153962955, −3.209419727027077, −2.540128890766899, −2.071537254430544, −1.323987943167308, −0.6753689816773595, 0, 0.6753689816773595, 1.323987943167308, 2.071537254430544, 2.540128890766899, 3.209419727027077, 3.587789153962955, 4.400124566604819, 4.686739827813867, 5.421180402598767, 5.775033473260837, 6.069218441995290, 6.759177086528685, 7.056843766749627, 7.748607088053667, 7.930433966048604, 8.662328079230063, 9.348593799578168, 9.612803650501292, 9.968212356742992, 10.27910247213492, 10.99890050870854, 11.39523204795269, 11.69870751324071, 12.38002957010339, 12.70713491433103

Graph of the $Z$-function along the critical line