Properties

Label 2-372645-1.1-c1-0-106
Degree $2$
Conductor $372645$
Sign $-1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 5-s − 2·10-s − 3·11-s − 4·16-s + 6·17-s + 6·19-s − 2·20-s − 6·22-s − 2·23-s + 25-s − 10·29-s − 4·31-s − 8·32-s + 12·34-s − 2·37-s + 12·38-s − 8·41-s − 2·43-s − 6·44-s − 4·46-s + 2·50-s + 14·53-s + 3·55-s − 20·58-s + 6·59-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.447·5-s − 0.632·10-s − 0.904·11-s − 16-s + 1.45·17-s + 1.37·19-s − 0.447·20-s − 1.27·22-s − 0.417·23-s + 1/5·25-s − 1.85·29-s − 0.718·31-s − 1.41·32-s + 2.05·34-s − 0.328·37-s + 1.94·38-s − 1.24·41-s − 0.304·43-s − 0.904·44-s − 0.589·46-s + 0.282·50-s + 1.92·53-s + 0.404·55-s − 2.62·58-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74755394419309, −12.33469347687660, −11.85714708542586, −11.61928580089440, −11.17383281971598, −10.49510944347248, −10.15655499825128, −9.604030798419448, −9.120332665321519, −8.588481627662215, −7.921526713146013, −7.595305874475092, −7.164396255306871, −6.733686231306513, −5.837178905441552, −5.636428406428758, −5.262412560812979, −4.881665047282537, −4.145450904313459, −3.625290225060366, −3.372002065257876, −2.909354959576328, −2.175165465024421, −1.642715847275204, −0.7414753973538094, 0, 0.7414753973538094, 1.642715847275204, 2.175165465024421, 2.909354959576328, 3.372002065257876, 3.625290225060366, 4.145450904313459, 4.881665047282537, 5.262412560812979, 5.636428406428758, 5.837178905441552, 6.733686231306513, 7.164396255306871, 7.595305874475092, 7.921526713146013, 8.588481627662215, 9.120332665321519, 9.604030798419448, 10.15655499825128, 10.49510944347248, 11.17383281971598, 11.61928580089440, 11.85714708542586, 12.33469347687660, 12.74755394419309

Graph of the $Z$-function along the critical line