L(s) = 1 | + (−0.640 − 0.465i)2-s + (0.309 − 0.951i)3-s + (−0.424 − 1.30i)4-s + (−2.72 + 1.98i)5-s + (−0.640 + 0.465i)6-s + (0.780 + 2.40i)7-s + (−0.825 + 2.54i)8-s + (−0.809 − 0.587i)9-s + 2.67·10-s − 1.37·12-s + (4.72 + 3.43i)13-s + (0.618 − 1.90i)14-s + (1.04 + 3.20i)15-s + (−0.507 + 0.368i)16-s + (−2.16 + 1.57i)17-s + (0.244 + 0.753i)18-s + ⋯ |
L(s) = 1 | + (−0.453 − 0.329i)2-s + (0.178 − 0.549i)3-s + (−0.212 − 0.652i)4-s + (−1.22 + 0.886i)5-s + (−0.261 + 0.190i)6-s + (0.294 + 0.907i)7-s + (−0.291 + 0.898i)8-s + (−0.269 − 0.195i)9-s + 0.844·10-s − 0.396·12-s + (1.31 + 0.952i)13-s + (0.165 − 0.508i)14-s + (0.269 + 0.828i)15-s + (−0.126 + 0.0922i)16-s + (−0.524 + 0.380i)17-s + (0.0577 + 0.177i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.659 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.659 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.621236 + 0.281471i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.621236 + 0.281471i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.640 + 0.465i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (2.72 - 1.98i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.780 - 2.40i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.72 - 3.43i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.16 - 1.57i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.290 - 0.893i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 2T + 23T^{2} \) |
| 29 | \( 1 + (0.244 + 0.753i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (1.31 + 0.956i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.54 - 4.75i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (3.36 - 10.3i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 6.63T + 43T^{2} \) |
| 47 | \( 1 + (3.93 - 12.1i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.33 - 2.41i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 + 5.70i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (4.84 - 3.51i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 1.11T + 67T^{2} \) |
| 71 | \( 1 + (-8.69 + 6.31i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.82 - 8.70i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (3.32 + 2.41i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.52 + 1.10i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 0.627T + 89T^{2} \) |
| 97 | \( 1 + (8.48 + 6.16i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22385886147795236156437589547, −11.09042336375595841971720268031, −9.653240433288279454726329650336, −8.613001088628259718005862859392, −8.127566293261535037359616237281, −6.76255809709868602627194491776, −6.00415064640630737572942878594, −4.46644554339049063542544908055, −3.06390081618628394003676338688, −1.65280666325032177833019229412,
0.56121466692666824421319245914, 3.50166125042012130682780636727, 4.05059824164538791965083274872, 5.14190955941689848332265825502, 6.92616860817022800516721995721, 7.81807446335303163409949972739, 8.494919337026937123032233108265, 9.056251475346930238196586507052, 10.40881338012991056173598471451, 11.22580558067732439712456195562