L(s) = 1 | + (−0.640 − 0.465i)2-s + (0.309 − 0.951i)3-s + (−0.424 − 1.30i)4-s + (−2.72 + 1.98i)5-s + (−0.640 + 0.465i)6-s + (0.780 + 2.40i)7-s + (−0.825 + 2.54i)8-s + (−0.809 − 0.587i)9-s + 2.67·10-s − 1.37·12-s + (4.72 + 3.43i)13-s + (0.618 − 1.90i)14-s + (1.04 + 3.20i)15-s + (−0.507 + 0.368i)16-s + (−2.16 + 1.57i)17-s + (0.244 + 0.753i)18-s + ⋯ |
L(s) = 1 | + (−0.453 − 0.329i)2-s + (0.178 − 0.549i)3-s + (−0.212 − 0.652i)4-s + (−1.22 + 0.886i)5-s + (−0.261 + 0.190i)6-s + (0.294 + 0.907i)7-s + (−0.291 + 0.898i)8-s + (−0.269 − 0.195i)9-s + 0.844·10-s − 0.396·12-s + (1.31 + 0.952i)13-s + (0.165 − 0.508i)14-s + (0.269 + 0.828i)15-s + (−0.126 + 0.0922i)16-s + (−0.524 + 0.380i)17-s + (0.0577 + 0.177i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(0.659−0.751i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(0.659−0.751i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
0.659−0.751i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(202,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), 0.659−0.751i)
|
Particular Values
L(1) |
≈ |
0.621236+0.281471i |
L(21) |
≈ |
0.621236+0.281471i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.309+0.951i)T |
| 11 | 1 |
good | 2 | 1+(0.640+0.465i)T+(0.618+1.90i)T2 |
| 5 | 1+(2.72−1.98i)T+(1.54−4.75i)T2 |
| 7 | 1+(−0.780−2.40i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−4.72−3.43i)T+(4.01+12.3i)T2 |
| 17 | 1+(2.16−1.57i)T+(5.25−16.1i)T2 |
| 19 | 1+(0.290−0.893i)T+(−15.3−11.1i)T2 |
| 23 | 1−2T+23T2 |
| 29 | 1+(0.244+0.753i)T+(−23.4+17.0i)T2 |
| 31 | 1+(1.31+0.956i)T+(9.57+29.4i)T2 |
| 37 | 1+(−1.54−4.75i)T+(−29.9+21.7i)T2 |
| 41 | 1+(3.36−10.3i)T+(−33.1−24.0i)T2 |
| 43 | 1+6.63T+43T2 |
| 47 | 1+(3.93−12.1i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−3.33−2.41i)T+(16.3+50.4i)T2 |
| 59 | 1+(1.85+5.70i)T+(−47.7+34.6i)T2 |
| 61 | 1+(4.84−3.51i)T+(18.8−58.0i)T2 |
| 67 | 1+1.11T+67T2 |
| 71 | 1+(−8.69+6.31i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.82−8.70i)T+(−59.0+42.9i)T2 |
| 79 | 1+(3.32+2.41i)T+(24.4+75.1i)T2 |
| 83 | 1+(−1.52+1.10i)T+(25.6−78.9i)T2 |
| 89 | 1+0.627T+89T2 |
| 97 | 1+(8.48+6.16i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22385886147795236156437589547, −11.09042336375595841971720268031, −9.653240433288279454726329650336, −8.613001088628259718005862859392, −8.127566293261535037359616237281, −6.76255809709868602627194491776, −6.00415064640630737572942878594, −4.46644554339049063542544908055, −3.06390081618628394003676338688, −1.65280666325032177833019229412,
0.56121466692666824421319245914, 3.50166125042012130682780636727, 4.05059824164538791965083274872, 5.14190955941689848332265825502, 6.92616860817022800516721995721, 7.81807446335303163409949972739, 8.494919337026937123032233108265, 9.056251475346930238196586507052, 10.40881338012991056173598471451, 11.22580558067732439712456195562