L(s) = 1 | + (−0.640 + 0.465i)2-s + (0.309 + 0.951i)3-s + (−0.424 + 1.30i)4-s + (−2.72 − 1.98i)5-s + (−0.640 − 0.465i)6-s + (0.780 − 2.40i)7-s + (−0.825 − 2.54i)8-s + (−0.809 + 0.587i)9-s + 2.67·10-s − 1.37·12-s + (4.72 − 3.43i)13-s + (0.618 + 1.90i)14-s + (1.04 − 3.20i)15-s + (−0.507 − 0.368i)16-s + (−2.16 − 1.57i)17-s + (0.244 − 0.753i)18-s + ⋯ |
L(s) = 1 | + (−0.453 + 0.329i)2-s + (0.178 + 0.549i)3-s + (−0.212 + 0.652i)4-s + (−1.22 − 0.886i)5-s + (−0.261 − 0.190i)6-s + (0.294 − 0.907i)7-s + (−0.291 − 0.898i)8-s + (−0.269 + 0.195i)9-s + 0.844·10-s − 0.396·12-s + (1.31 − 0.952i)13-s + (0.165 + 0.508i)14-s + (0.269 − 0.828i)15-s + (−0.126 − 0.0922i)16-s + (−0.524 − 0.380i)17-s + (0.0577 − 0.177i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.621236 - 0.281471i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.621236 - 0.281471i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.640 - 0.465i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.72 + 1.98i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.780 + 2.40i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.72 + 3.43i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.16 + 1.57i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.290 + 0.893i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2T + 23T^{2} \) |
| 29 | \( 1 + (0.244 - 0.753i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.31 - 0.956i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.54 + 4.75i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.36 + 10.3i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6.63T + 43T^{2} \) |
| 47 | \( 1 + (3.93 + 12.1i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.33 + 2.41i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 - 5.70i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.84 + 3.51i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 1.11T + 67T^{2} \) |
| 71 | \( 1 + (-8.69 - 6.31i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.82 + 8.70i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.32 - 2.41i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.52 - 1.10i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 0.627T + 89T^{2} \) |
| 97 | \( 1 + (8.48 - 6.16i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22580558067732439712456195562, −10.40881338012991056173598471451, −9.056251475346930238196586507052, −8.494919337026937123032233108265, −7.81807446335303163409949972739, −6.92616860817022800516721995721, −5.14190955941689848332265825502, −4.05059824164538791965083274872, −3.50166125042012130682780636727, −0.56121466692666824421319245914,
1.65280666325032177833019229412, 3.06390081618628394003676338688, 4.46644554339049063542544908055, 6.00415064640630737572942878594, 6.76255809709868602627194491776, 8.127566293261535037359616237281, 8.613001088628259718005862859392, 9.653240433288279454726329650336, 11.09042336375595841971720268031, 11.22385886147795236156437589547