Properties

Label 2-361998-1.1-c1-0-26
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 7-s + 8-s − 2·10-s + 4·11-s − 14-s + 16-s + 17-s + 19-s − 2·20-s + 4·22-s + 4·23-s − 25-s − 28-s − 29-s − 31-s + 32-s + 34-s + 2·35-s + 10·37-s + 38-s − 2·40-s − 5·41-s + 12·43-s + 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s + 0.353·8-s − 0.632·10-s + 1.20·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.229·19-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s − 0.188·28-s − 0.185·29-s − 0.179·31-s + 0.176·32-s + 0.171·34-s + 0.338·35-s + 1.64·37-s + 0.162·38-s − 0.316·40-s − 0.780·41-s + 1.82·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.461106439\)
\(L(\frac12)\) \(\approx\) \(3.461106439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51314924282399, −12.11450015781123, −11.62543857220820, −11.26143328481655, −11.01801613125306, −10.29443544972375, −9.832715585544601, −9.198502708288154, −9.058235943171484, −8.318399512909782, −7.785076676256610, −7.376222537724617, −7.060474799276032, −6.338384304068875, −6.060090758309928, −5.616915508542848, −4.680023173331753, −4.577302300297092, −3.969809328010447, −3.463046700766988, −3.112805730396311, −2.511889426676506, −1.687023400531182, −1.158362572298884, −0.4504178195772614, 0.4504178195772614, 1.158362572298884, 1.687023400531182, 2.511889426676506, 3.112805730396311, 3.463046700766988, 3.969809328010447, 4.577302300297092, 4.680023173331753, 5.616915508542848, 6.060090758309928, 6.338384304068875, 7.060474799276032, 7.376222537724617, 7.785076676256610, 8.318399512909782, 9.058235943171484, 9.198502708288154, 9.832715585544601, 10.29443544972375, 11.01801613125306, 11.26143328481655, 11.62543857220820, 12.11450015781123, 12.51314924282399

Graph of the $Z$-function along the critical line