Properties

Label 2-360e2-1.1-c1-0-128
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 4·11-s + 3·17-s + 8·19-s − 2·29-s − 4·31-s − 8·37-s + 9·41-s + 6·43-s + 7·47-s + 2·49-s + 6·53-s + 12·59-s + 10·61-s − 10·67-s − 4·71-s + 9·73-s + 12·77-s + 5·79-s − 6·83-s − 13·89-s + 7·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.13·7-s + 1.20·11-s + 0.727·17-s + 1.83·19-s − 0.371·29-s − 0.718·31-s − 1.31·37-s + 1.40·41-s + 0.914·43-s + 1.02·47-s + 2/7·49-s + 0.824·53-s + 1.56·59-s + 1.28·61-s − 1.22·67-s − 0.474·71-s + 1.05·73-s + 1.36·77-s + 0.562·79-s − 0.658·83-s − 1.37·89-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.614642525\)
\(L(\frac12)\) \(\approx\) \(4.614642525\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69589701935747, −12.97922570063808, −12.38876768530852, −11.92899935309253, −11.66874426893690, −11.12053079515944, −10.74307822947850, −10.00129117646284, −9.625079582250503, −9.002004288539844, −8.759572511918150, −7.980862889795984, −7.582829559340829, −7.144152966534435, −6.677182761736233, −5.702273682426719, −5.540897121713841, −5.048265234963642, −4.161926438125951, −3.922618141922834, −3.245779425526653, −2.521912332660114, −1.777392410538877, −1.205853948167361, −0.7350079125051868, 0.7350079125051868, 1.205853948167361, 1.777392410538877, 2.521912332660114, 3.245779425526653, 3.922618141922834, 4.161926438125951, 5.048265234963642, 5.540897121713841, 5.702273682426719, 6.677182761736233, 7.144152966534435, 7.582829559340829, 7.980862889795984, 8.759572511918150, 9.002004288539844, 9.625079582250503, 10.00129117646284, 10.74307822947850, 11.12053079515944, 11.66874426893690, 11.92899935309253, 12.38876768530852, 12.97922570063808, 13.69589701935747

Graph of the $Z$-function along the critical line