Properties

Label 2-35700-1.1-c1-0-5
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 5·11-s − 2·13-s − 17-s − 4·19-s + 21-s − 7·23-s + 27-s + 6·29-s − 5·31-s − 5·33-s − 2·39-s − 10·41-s + 12·43-s + 7·47-s + 49-s − 51-s − 4·53-s − 4·57-s − 9·59-s − 3·61-s + 63-s + 11·67-s − 7·69-s + 7·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.50·11-s − 0.554·13-s − 0.242·17-s − 0.917·19-s + 0.218·21-s − 1.45·23-s + 0.192·27-s + 1.11·29-s − 0.898·31-s − 0.870·33-s − 0.320·39-s − 1.56·41-s + 1.82·43-s + 1.02·47-s + 1/7·49-s − 0.140·51-s − 0.549·53-s − 0.529·57-s − 1.17·59-s − 0.384·61-s + 0.125·63-s + 1.34·67-s − 0.842·69-s + 0.830·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.484589761\)
\(L(\frac12)\) \(\approx\) \(1.484589761\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.97446949745895, −14.28277268873937, −13.96109188509863, −13.44920283854109, −12.72937915084126, −12.48646513445201, −11.87417620661943, −11.11103685410270, −10.48016419386002, −10.33236190917609, −9.585334170490226, −8.979144769244599, −8.331805494800278, −7.985917885068722, −7.470579460421849, −6.866159128096843, −6.074999323125556, −5.526566675228752, −4.790823547844959, −4.353044299624897, −3.608729952009694, −2.746841147729526, −2.305927543447686, −1.677980269644328, −0.4106876441717064, 0.4106876441717064, 1.677980269644328, 2.305927543447686, 2.746841147729526, 3.608729952009694, 4.353044299624897, 4.790823547844959, 5.526566675228752, 6.074999323125556, 6.866159128096843, 7.470579460421849, 7.985917885068722, 8.331805494800278, 8.979144769244599, 9.585334170490226, 10.33236190917609, 10.48016419386002, 11.11103685410270, 11.87417620661943, 12.48646513445201, 12.72937915084126, 13.44920283854109, 13.96109188509863, 14.28277268873937, 14.97446949745895

Graph of the $Z$-function along the critical line