Properties

Label 2-35700-1.1-c1-0-19
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 2·13-s + 17-s + 2·19-s + 21-s − 6·23-s − 27-s − 6·29-s − 4·31-s + 4·37-s + 2·39-s + 6·41-s − 2·43-s + 49-s − 51-s − 2·57-s + 12·59-s + 8·61-s − 63-s − 14·67-s + 6·69-s − 2·73-s + 8·79-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.554·13-s + 0.242·17-s + 0.458·19-s + 0.218·21-s − 1.25·23-s − 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.657·37-s + 0.320·39-s + 0.937·41-s − 0.304·43-s + 1/7·49-s − 0.140·51-s − 0.264·57-s + 1.56·59-s + 1.02·61-s − 0.125·63-s − 1.71·67-s + 0.722·69-s − 0.234·73-s + 0.900·79-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.14052119859881, −14.62679711610428, −14.29021946638638, −13.37683471156656, −13.18104118352078, −12.48353741769818, −12.00325244667616, −11.59564307618421, −10.97099271581144, −10.42504278276694, −9.831492751448618, −9.478223786336379, −8.865949895978221, −8.025139721303073, −7.562163342710675, −7.062899332699531, −6.358919216468836, −5.777811829652884, −5.379762895483012, −4.622508688036923, −3.942910259589573, −3.420345825331447, −2.474924835870661, −1.863644076304356, −0.8535781618680735, 0, 0.8535781618680735, 1.863644076304356, 2.474924835870661, 3.420345825331447, 3.942910259589573, 4.622508688036923, 5.379762895483012, 5.777811829652884, 6.358919216468836, 7.062899332699531, 7.562163342710675, 8.025139721303073, 8.865949895978221, 9.478223786336379, 9.831492751448618, 10.42504278276694, 10.97099271581144, 11.59564307618421, 12.00325244667616, 12.48353741769818, 13.18104118352078, 13.37683471156656, 14.29021946638638, 14.62679711610428, 15.14052119859881

Graph of the $Z$-function along the critical line