Properties

Label 2-35700-1.1-c1-0-1
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 5·11-s + 2·13-s + 17-s − 4·19-s + 21-s + 7·23-s − 27-s + 6·29-s − 5·31-s + 5·33-s − 2·39-s − 10·41-s − 12·43-s − 7·47-s + 49-s − 51-s + 4·53-s + 4·57-s − 9·59-s − 3·61-s − 63-s − 11·67-s − 7·69-s + 7·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.50·11-s + 0.554·13-s + 0.242·17-s − 0.917·19-s + 0.218·21-s + 1.45·23-s − 0.192·27-s + 1.11·29-s − 0.898·31-s + 0.870·33-s − 0.320·39-s − 1.56·41-s − 1.82·43-s − 1.02·47-s + 1/7·49-s − 0.140·51-s + 0.549·53-s + 0.529·57-s − 1.17·59-s − 0.384·61-s − 0.125·63-s − 1.34·67-s − 0.842·69-s + 0.830·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7660716057\)
\(L(\frac12)\) \(\approx\) \(0.7660716057\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.02899751152836, −14.53431066298960, −13.59580533029706, −13.26092799107923, −12.96043586813542, −12.31024490435050, −11.80530374441526, −11.10323957299556, −10.66350381608465, −10.30444783106097, −9.751547271786987, −8.976709237136297, −8.425385308741545, −7.973309515347904, −7.183659823837308, −6.706268516474927, −6.178926455789770, −5.453706450869195, −4.960967094355399, −4.518366849484632, −3.398746600841853, −3.122542448302539, −2.171171043389024, −1.383177667974870, −0.3417492570113006, 0.3417492570113006, 1.383177667974870, 2.171171043389024, 3.122542448302539, 3.398746600841853, 4.518366849484632, 4.960967094355399, 5.453706450869195, 6.178926455789770, 6.706268516474927, 7.183659823837308, 7.973309515347904, 8.425385308741545, 8.976709237136297, 9.751547271786987, 10.30444783106097, 10.66350381608465, 11.10323957299556, 11.80530374441526, 12.31024490435050, 12.96043586813542, 13.26092799107923, 13.59580533029706, 14.53431066298960, 15.02899751152836

Graph of the $Z$-function along the critical line