| L(s)  = 1 | + (−0.366 − 0.366i)3-s     + (−0.866 − 0.5i)5-s         − 0.732i·9-s     − i·11-s         + (0.133 + 0.5i)15-s                 + (−1.36 − 1.36i)23-s     + (0.499 + 0.866i)25-s     + (−0.633 + 0.633i)27-s         + i·31-s     + (−0.366 + 0.366i)33-s         + (0.366 + 0.366i)37-s                 + (−0.366 + 0.633i)45-s     + (−1 + i)47-s     − i·49-s         + (1 − i)53-s    + ⋯ | 
| L(s)  = 1 | + (−0.366 − 0.366i)3-s     + (−0.866 − 0.5i)5-s         − 0.732i·9-s     − i·11-s         + (0.133 + 0.5i)15-s                 + (−1.36 − 1.36i)23-s     + (0.499 + 0.866i)25-s     + (−0.633 + 0.633i)27-s         + i·31-s     + (−0.366 + 0.366i)33-s         + (0.366 + 0.366i)37-s                 + (−0.366 + 0.633i)45-s     + (−1 + i)47-s     − i·49-s         + (1 − i)53-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(0.4655333513\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.4655333513\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 5 | \( 1 + (0.866 + 0.5i)T \) | 
|  | 11 | \( 1 + iT \) | 
| good | 3 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) | 
|  | 7 | \( 1 + iT^{2} \) | 
|  | 13 | \( 1 + iT^{2} \) | 
|  | 17 | \( 1 - iT^{2} \) | 
|  | 19 | \( 1 - T^{2} \) | 
|  | 23 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) | 
|  | 29 | \( 1 + T^{2} \) | 
|  | 31 | \( 1 - iT - T^{2} \) | 
|  | 37 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) | 
|  | 41 | \( 1 - T^{2} \) | 
|  | 43 | \( 1 - iT^{2} \) | 
|  | 47 | \( 1 + (1 - i)T - iT^{2} \) | 
|  | 53 | \( 1 + (-1 + i)T - iT^{2} \) | 
|  | 59 | \( 1 + T + T^{2} \) | 
|  | 61 | \( 1 - T^{2} \) | 
|  | 67 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) | 
|  | 71 | \( 1 + 1.73iT - T^{2} \) | 
|  | 73 | \( 1 + iT^{2} \) | 
|  | 79 | \( 1 - T^{2} \) | 
|  | 83 | \( 1 - iT^{2} \) | 
|  | 89 | \( 1 - iT - T^{2} \) | 
|  | 97 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.404878217187923918154263527227, −7.74410611981644074808021501215, −6.79452288205893017782299993568, −6.24238451158614976905134171180, −5.43085957637743082364506314566, −4.48559783970044259250182539723, −3.73570617968852139911962425051, −2.91720505887471695606093219709, −1.42402016148136689242842073260, −0.29142745403466414342809404258, 
1.79192709882737053832664303168, 2.77477209896021802487901134215, 3.95335025811482280535672987251, 4.36300983500307617052202744467, 5.32052859328401642483734147173, 6.07535275547887912679904707010, 7.04786165208031453519921698090, 7.72748371545842967980730193285, 8.057162344082686815627454513117, 9.261050291883630907317447557235
