Properties

Label 3520.1407
Modulus $3520$
Conductor $220$
Order $4$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3520, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,0,1,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1407,3520))
 

Basic properties

Modulus: \(3520\)
Conductor: \(220\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{220}(87,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3520.y

\(\chi_{3520}(703,\cdot)\) \(\chi_{3520}(1407,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.242000.2

Values on generators

\((2751,1541,2817,321)\) → \((-1,1,i,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3520 }(1407, a) \) \(-1\)\(1\)\(i\)\(i\)\(-1\)\(i\)\(-i\)\(-1\)\(-1\)\(i\)\(-i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3520 }(1407,a) \;\) at \(\;a = \) e.g. 2