Properties

Label 2-348726-1.1-c1-0-46
Degree $2$
Conductor $348726$
Sign $1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 5·11-s + 12-s + 2·13-s + 14-s − 15-s + 16-s + 3·17-s + 18-s − 20-s + 21-s + 5·22-s − 23-s + 24-s − 4·25-s + 2·26-s + 27-s + 28-s + 10·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s + 0.288·12-s + 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.223·20-s + 0.218·21-s + 1.06·22-s − 0.208·23-s + 0.204·24-s − 4/5·25-s + 0.392·26-s + 0.192·27-s + 0.188·28-s + 1.85·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.537678916\)
\(L(\frac12)\) \(\approx\) \(9.537678916\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.29069994596148, −12.25439515867458, −11.70227316122387, −11.42893919118479, −10.79702606837647, −10.34878126423259, −9.818040705949236, −9.334743146163211, −8.895569280970217, −8.236439920461960, −8.055564501583467, −7.533174770702552, −6.827908266138062, −6.617936460370538, −5.964304834658267, −5.638051650554867, −4.666229739208848, −4.581751288148404, −3.904641810369464, −3.501854040741414, −3.164783595089622, −2.298584283248947, −1.902848450755926, −1.070254694917005, −0.7952959456285460, 0.7952959456285460, 1.070254694917005, 1.902848450755926, 2.298584283248947, 3.164783595089622, 3.501854040741414, 3.904641810369464, 4.581751288148404, 4.666229739208848, 5.638051650554867, 5.964304834658267, 6.617936460370538, 6.827908266138062, 7.533174770702552, 8.055564501583467, 8.236439920461960, 8.895569280970217, 9.334743146163211, 9.818040705949236, 10.34878126423259, 10.79702606837647, 11.42893919118479, 11.70227316122387, 12.25439515867458, 12.29069994596148

Graph of the $Z$-function along the critical line