Properties

Label 2-348726-1.1-c1-0-36
Degree $2$
Conductor $348726$
Sign $-1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 12-s − 13-s + 14-s + 15-s + 16-s − 4·17-s + 18-s − 20-s − 21-s + 23-s − 24-s − 4·25-s − 26-s − 27-s + 28-s − 29-s + 30-s − 2·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.223·20-s − 0.218·21-s + 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s + 0.188·28-s − 0.185·29-s + 0.182·30-s − 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 4 T + p T^{2} \) 1.17.e
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83677334169475, −12.25192849597831, −11.75449958059924, −11.59155312445156, −11.13229975435680, −10.59896600496424, −10.31237400269913, −9.613372911848427, −9.190969437727041, −8.623769428352827, −8.051108602230691, −7.593442552471810, −7.248952552165505, −6.541482301459494, −6.386075765840649, −5.596017559980873, −5.324509272920762, −4.722598041701246, −4.295100402266782, −3.880264630078239, −3.343707195405244, −2.539698960312160, −2.156949923970506, −1.483746358430867, −0.7309070602932734, 0, 0.7309070602932734, 1.483746358430867, 2.156949923970506, 2.539698960312160, 3.343707195405244, 3.880264630078239, 4.295100402266782, 4.722598041701246, 5.324509272920762, 5.596017559980873, 6.386075765840649, 6.541482301459494, 7.248952552165505, 7.593442552471810, 8.051108602230691, 8.623769428352827, 9.190969437727041, 9.613372911848427, 10.31237400269913, 10.59896600496424, 11.13229975435680, 11.59155312445156, 11.75449958059924, 12.25192849597831, 12.83677334169475

Graph of the $Z$-function along the critical line