L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.974 − 1.22i)3-s + (−0.900 + 0.433i)4-s + (0.974 − 1.22i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.321 + 1.40i)9-s + (−0.433 − 1.90i)11-s + (1.40 + 0.678i)12-s + (−0.0990 − 0.433i)13-s + (0.781 + 0.623i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 1.44·18-s + (−1.52 − 0.347i)21-s + (1.75 − 0.846i)22-s + ⋯ |
L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.974 − 1.22i)3-s + (−0.900 + 0.433i)4-s + (0.974 − 1.22i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.321 + 1.40i)9-s + (−0.433 − 1.90i)11-s + (1.40 + 0.678i)12-s + (−0.0990 − 0.433i)13-s + (0.781 + 0.623i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 1.44·18-s + (−1.52 − 0.347i)21-s + (1.75 − 0.846i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4273583382\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4273583382\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.222 - 0.974i)T \) |
| 7 | \( 1 + (-0.781 + 0.623i)T \) |
| 17 | \( 1 + (0.900 + 0.433i)T \) |
good | 3 | \( 1 + (0.974 + 1.22i)T + (-0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (0.433 + 1.90i)T + (-0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (0.0990 + 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (1.75 - 0.846i)T + (0.623 - 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 - 1.56T + T^{2} \) |
| 37 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 61 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (1.40 - 0.678i)T + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 + 1.94T + T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.277 + 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.104545540949305425919616301160, −7.70504125710573675664340503245, −7.01288259300451560212850498626, −6.11543972583117048913994141812, −5.79793878195699069812163193371, −5.03638973199086095671098649627, −4.08303706359951106917795204764, −2.96096198791885684176359945591, −1.40432744376348382392468374215, −0.27448086789833278714479463189,
1.86710255932552172016212034657, 2.50349385747068693840208406740, 4.06081075910682148603794353477, 4.60548817932567424209086391866, 4.76474603490040270418594549273, 5.84886449894446984705956300999, 6.47398277543495059303142276961, 7.87661464792931116646939910901, 8.607750376940455559255080502022, 9.460091179807245214618354741875