L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.974 − 1.22i)3-s + (−0.900 + 0.433i)4-s + (0.974 − 1.22i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.321 + 1.40i)9-s + (−0.433 − 1.90i)11-s + (1.40 + 0.678i)12-s + (−0.0990 − 0.433i)13-s + (0.781 + 0.623i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 1.44·18-s + (−1.52 − 0.347i)21-s + (1.75 − 0.846i)22-s + ⋯ |
L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.974 − 1.22i)3-s + (−0.900 + 0.433i)4-s + (0.974 − 1.22i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.321 + 1.40i)9-s + (−0.433 − 1.90i)11-s + (1.40 + 0.678i)12-s + (−0.0990 − 0.433i)13-s + (0.781 + 0.623i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 1.44·18-s + (−1.52 − 0.347i)21-s + (1.75 − 0.846i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801+0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801+0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.801+0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1359,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.801+0.598i)
|
Particular Values
L(21) |
≈ |
0.4273583382 |
L(21) |
≈ |
0.4273583382 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.222−0.974i)T |
| 7 | 1+(−0.781+0.623i)T |
| 17 | 1+(0.900+0.433i)T |
good | 3 | 1+(0.974+1.22i)T+(−0.222+0.974i)T2 |
| 5 | 1+(0.222−0.974i)T2 |
| 11 | 1+(0.433+1.90i)T+(−0.900+0.433i)T2 |
| 13 | 1+(0.0990+0.433i)T+(−0.900+0.433i)T2 |
| 19 | 1−T2 |
| 23 | 1+(1.75−0.846i)T+(0.623−0.781i)T2 |
| 29 | 1+(−0.623−0.781i)T2 |
| 31 | 1−1.56T+T2 |
| 37 | 1+(−0.623−0.781i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(0.222+0.974i)T2 |
| 47 | 1+(0.900−0.433i)T2 |
| 53 | 1+(1.12−0.541i)T+(0.623−0.781i)T2 |
| 59 | 1+(0.222+0.974i)T2 |
| 61 | 1+(−0.623−0.781i)T2 |
| 67 | 1−T2 |
| 71 | 1+(1.40−0.678i)T+(0.623−0.781i)T2 |
| 73 | 1+(0.900+0.433i)T2 |
| 79 | 1+1.94T+T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(−0.277+1.21i)T+(−0.900−0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.104545540949305425919616301160, −7.70504125710573675664340503245, −7.01288259300451560212850498626, −6.11543972583117048913994141812, −5.79793878195699069812163193371, −5.03638973199086095671098649627, −4.08303706359951106917795204764, −2.96096198791885684176359945591, −1.40432744376348382392468374215, −0.27448086789833278714479463189,
1.86710255932552172016212034657, 2.50349385747068693840208406740, 4.06081075910682148603794353477, 4.60548817932567424209086391866, 4.76474603490040270418594549273, 5.84886449894446984705956300999, 6.47398277543495059303142276961, 7.87661464792931116646939910901, 8.607750376940455559255080502022, 9.460091179807245214618354741875