Properties

Label 2-330e2-1.1-c1-0-20
Degree $2$
Conductor $108900$
Sign $1$
Analytic cond. $869.570$
Root an. cond. $29.4884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 5·13-s − 7·19-s + 11·31-s − 37-s + 5·43-s + 9·49-s − 61-s + 11·67-s − 7·73-s + 17·79-s − 20·91-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.38·13-s − 1.60·19-s + 1.97·31-s − 0.164·37-s + 0.762·43-s + 9/7·49-s − 0.128·61-s + 1.34·67-s − 0.819·73-s + 1.91·79-s − 2.09·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(869.570\)
Root analytic conductor: \(29.4884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 108900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.745159526\)
\(L(\frac12)\) \(\approx\) \(1.745159526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 11 T + p T^{2} \) 1.31.al
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42897267094817, −13.26440868524781, −12.78139625150765, −12.27469920486531, −11.82727603606905, −11.12083429098131, −10.68764693709336, −10.25850115450287, −9.800688722765683, −9.150230531956780, −8.826713767048201, −8.223840472590451, −7.835802265433169, −6.884819308764844, −6.558339524772132, −6.209064743555771, −5.777078216322809, −4.955026014778313, −4.233477856890959, −3.850300821245604, −3.250525441112428, −2.671239394213814, −2.057167728065775, −1.101735722139818, −0.4556609994279276, 0.4556609994279276, 1.101735722139818, 2.057167728065775, 2.671239394213814, 3.250525441112428, 3.850300821245604, 4.233477856890959, 4.955026014778313, 5.777078216322809, 6.209064743555771, 6.558339524772132, 6.884819308764844, 7.835802265433169, 8.223840472590451, 8.826713767048201, 9.150230531956780, 9.800688722765683, 10.25850115450287, 10.68764693709336, 11.12083429098131, 11.82727603606905, 12.27469920486531, 12.78139625150765, 13.26440868524781, 13.42897267094817

Graph of the $Z$-function along the critical line