L(s) = 1 | + (−0.809 + 0.587i)4-s + (−0.304 − 0.418i)7-s + (−1.83 + 0.596i)13-s + (0.309 − 0.951i)16-s + (0.831 − 1.14i)19-s + (0.809 + 0.587i)25-s + (0.492 + 0.159i)28-s + (−0.535 − 1.64i)31-s − 1.41i·43-s + (0.226 − 0.696i)49-s + (1.13 − 1.56i)52-s + (−1.34 − 0.437i)61-s + (0.309 + 0.951i)64-s + 1.73·67-s + (−1.13 − 1.56i)73-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)4-s + (−0.304 − 0.418i)7-s + (−1.83 + 0.596i)13-s + (0.309 − 0.951i)16-s + (0.831 − 1.14i)19-s + (0.809 + 0.587i)25-s + (0.492 + 0.159i)28-s + (−0.535 − 1.64i)31-s − 1.41i·43-s + (0.226 − 0.696i)49-s + (1.13 − 1.56i)52-s + (−1.34 − 0.437i)61-s + (0.309 + 0.951i)64-s + 1.73·67-s + (−1.13 − 1.56i)73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.292+0.956i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.292+0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.292+0.956i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(2998,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.292+0.956i)
|
Particular Values
L(21) |
≈ |
0.6441723538 |
L(21) |
≈ |
0.6441723538 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.809−0.587i)T2 |
| 5 | 1+(−0.809−0.587i)T2 |
| 7 | 1+(0.304+0.418i)T+(−0.309+0.951i)T2 |
| 13 | 1+(1.83−0.596i)T+(0.809−0.587i)T2 |
| 17 | 1+(0.809+0.587i)T2 |
| 19 | 1+(−0.831+1.14i)T+(−0.309−0.951i)T2 |
| 23 | 1+T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(0.535+1.64i)T+(−0.809+0.587i)T2 |
| 37 | 1+(0.309−0.951i)T2 |
| 41 | 1+(−0.309−0.951i)T2 |
| 43 | 1+1.41iT−T2 |
| 47 | 1+(0.309+0.951i)T2 |
| 53 | 1+(−0.809+0.587i)T2 |
| 59 | 1+(0.309−0.951i)T2 |
| 61 | 1+(1.34+0.437i)T+(0.809+0.587i)T2 |
| 67 | 1−1.73T+T2 |
| 71 | 1+(−0.809−0.587i)T2 |
| 73 | 1+(1.13+1.56i)T+(−0.309+0.951i)T2 |
| 79 | 1+(−1.83+0.596i)T+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.869676825760762830205283667505, −7.72256321691022467921170622070, −7.35683961957015230975891221853, −6.66676201213035514869613039975, −5.33131276202724699023675114036, −4.84887751292469121028238542200, −4.03273756133781538159435564945, −3.15197777062040201778723862841, −2.23750292159158818923295133690, −0.43068129681576193715264096459,
1.22554977726817142538065734547, 2.55117617851007652666873958086, 3.42251186699316920350359868858, 4.57340288780439488799194435188, 5.15921035436385732826333329337, 5.77369127872901694884807182199, 6.69492827332307969169185530593, 7.58087061093774244561794553613, 8.274175481943559679583579421570, 9.108693262732714004245426640441