L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.304 + 0.418i)7-s + (−1.83 − 0.596i)13-s + (0.309 + 0.951i)16-s + (0.831 + 1.14i)19-s + (0.809 − 0.587i)25-s + (0.492 − 0.159i)28-s + (−0.535 + 1.64i)31-s + 1.41i·43-s + (0.226 + 0.696i)49-s + (1.13 + 1.56i)52-s + (−1.34 + 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (−1.13 + 1.56i)73-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.304 + 0.418i)7-s + (−1.83 − 0.596i)13-s + (0.309 + 0.951i)16-s + (0.831 + 1.14i)19-s + (0.809 − 0.587i)25-s + (0.492 − 0.159i)28-s + (−0.535 + 1.64i)31-s + 1.41i·43-s + (0.226 + 0.696i)49-s + (1.13 + 1.56i)52-s + (−1.34 + 0.437i)61-s + (0.309 − 0.951i)64-s + 1.73·67-s + (−1.13 + 1.56i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6441723538\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6441723538\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (0.304 - 0.418i)T + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (1.83 + 0.596i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.831 - 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.535 - 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 1.41iT - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (1.34 - 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 1.73T + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (1.13 - 1.56i)T + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-1.83 - 0.596i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.108693262732714004245426640441, −8.274175481943559679583579421570, −7.58087061093774244561794553613, −6.69492827332307969169185530593, −5.77369127872901694884807182199, −5.15921035436385732826333329337, −4.57340288780439488799194435188, −3.42251186699316920350359868858, −2.55117617851007652666873958086, −1.22554977726817142538065734547,
0.43068129681576193715264096459, 2.23750292159158818923295133690, 3.15197777062040201778723862841, 4.03273756133781538159435564945, 4.84887751292469121028238542200, 5.33131276202724699023675114036, 6.66676201213035514869613039975, 7.35683961957015230975891221853, 7.72256321691022467921170622070, 8.869676825760762830205283667505