sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,9]))
pari:[g,chi] = znchar(Mod(2998,3267))
\(\chi_{3267}(838,\cdot)\)
\(\chi_{3267}(2296,\cdot)\)
\(\chi_{3267}(2944,\cdot)\)
\(\chi_{3267}(2998,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3026,244)\) → \((1,e\left(\frac{9}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 3267 }(2998, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) |
sage:chi.jacobi_sum(n)